
35

EXAMPLE
C++ By

2

What Is a
Program?

This chapter introduces you to fundamental programming con-

cepts. The task of programming computers has been described as

rewarding, challenging, easy, difficult, fast, and slow. Actually, it is

a combination of all these descriptions. Writing complex programs

to solve advanced problems can be frustrating and time-consuming,

but you can have fun along the way, especially with the rich

assortment of features that C++ has to offer.

This chapter also describes the concept of programming, from

a program’s inception to its execution on your computer. The most

difficult part of programming is breaking the problem into logical

steps that the computer can execute. Before you finish this chapter,

you will type and execute your first C++ program.

This chapter introduces you to

♦ The concept of programming

♦ The program’s output

♦ Program design

♦ Using an editor

♦ Using a compiler

Chapter 2 ♦ What Is a Program?

36

♦ Typing and running a C++ program

♦ Handling errors

After you complete this chapter, you should be ready to learn

the C++ programming language elements in greater detail.

Computer Programs
Before you can make C++ work for you, you must write a C++

program. You have seen the word program used several times in this

book. The following note defines a program more formally.

NOTE: A program is a list of instructions that tells the computer

to do things.

Keep in mind that computers are only machines. They’re not

smart; in fact, they’re quite the opposite! They don’t do anything

until they are given detailed instructions. A word processor, for

example, is a program somebody wrote—in a language such as

C++—that tells your computer exactly how to behave when you

type words into it.

You are familiar with the concept of programming if you have

ever followed a recipe, which is a “program,” or a list of instructions,

telling you how to prepare a certain dish. A good recipe lists these

instructions in their proper order and with enough description so

you can carry out the directions successfully, without assuming

anything.

If you want your computer to help with your budget, keep

track of names and addresses, or compute your gas mileage, it needs

a program to tell it how to do those things. You can supply that

program in two ways: buy a program somebody else wrote, or write

the program yourself.

Writing the program yourself has a big advantage for many

applications: The program does exactly what you want it to do. If you

buy one that is already written, you have to adapt your needs to

those of the author of the program. This is where C++ comes into

37

EXAMPLE
C++ By

play. With the C++ programming language (and a little studying),

you can make your computer carry out your own tasks precisely.

To give C++ programming instructions to your computer, you

need an editor and a C++ compiler. An editor is similar to a word

processor; it is a program that enables you to type a C++ program

into memory, make changes (such as moving, copying, inserting,

and deleting text), and save the program more permanently in a disk

file. After you use the editor to type the program, you must compile

it before you can run it.

The C++ programming language is called a compiled language.

You cannot write a C++ program and run it on your computer unless

you have a C++ compiler. This compiler takes your C++ language

instructions and translates them into a form that your computer can

read. A C++ compiler is the tool your computer uses to understand

the C++ language instructions in your programs. Many compilers

come with their own built-in editor. If yours does, you probably feel

that your C++ programming is more integrated.

To some beginning programmers, the process of compiling a

program before running it might seem like an added and meaning-

less step. If you know the BASIC programming language, you might

not have heard of a compiler or understand the need for one. That’s

because BASIC (also APL and some versions of other computer

languages) is not a compiled language, but an interpreted language.

Instead of translating the entire program into machine-readable

form (as a compiler does in one step), an interpreter translates each

program instruction—then executes it—before translating the next

one. The difference between the two is subtle, but the bottom line is

not: Compilers produce much more efficient and faster-running

programs than interpreters do. This seemingly extra step of compil-

ing is worth the effort (and with today’s compilers, there is not much

extra effort needed).

Because computers are machines that do not think, the instruc-

tions you write in C++ must be detailed. You cannot assume your

computer understands what to do if some instruction is not in your

program, or if you write an instruction that does not conform to C++

language requirements.

After you write and compile a C++ program, you have to run,
or execute, it. Otherwise, your computer would not know that you

Chapter 2 ♦ What Is a Program?

38

want it to follow the instructions in the program. Just as a cook must

follow a recipe’s instructions before making the dish, so too your

computer must execute a program’s instructions before it can ac-

complish what you want it to do. When you run a program, you are

telling the computer to carry out your instructions.

The Program and Its Output

While you are programming, remember the difference be-

tween a program and its output. Your program contains only

the C++ instructions that you write, but the computer follows

your instructions only after you run the program.

Throughout this book, you often see a program listing (that is,

the C++ instructions in the program) followed by the results

that occur when you run the program. The results are the

output of the program, and they go to an output device such as

the screen, the printer, or a disk file.

Program Design
You must plan your programs before typing them into your

C++ editor. When builders construct houses, for example, they don’t

immediately grab their lumber and tools and start building! They

first find out what the owner of the house wants, then they draw up

the plans, order the materials, gather the workers, and finally start

building the house.

The hardest part of writing a program is breaking it into logical

steps that the computer can follow. Learning the C++ language is a

requirement, but it is not the only thing to consider. There is a

method of writing programs, a formal procedure you should learn,

that makes your programming job easier. To write a program you

should:

1. Define the problem to be solved with the computer.

2. Design the program’s output (what the user should see).

Design your
programs before you
type them.

39

EXAMPLE
C++ By

3. Break the problem into logical steps to achieve this output.

4. Write the program (using the editor).

5. Compile the program.

6. Test the program to assure it performs as you expect.

As you can see from this procedure, the typing of your program

occurs toward the end of your programming. This is important,

because you first have to plan how to tell the computer how to

perform each task.

Your computer can perform instructions only step-by-step.

You must assume that your computer has no previous knowledge

of the problem, so it is up to you to provide that knowledge, which,

after all, is what a good recipe does. It would be a useless recipe for

a cake if all it said was: “Bake the cake.” Why? Because this assumes
too much on the part of the baker. Even if you write the recipe in

step-by-step fashion, proper care must be taken (through planning)

to be sure the steps are in sequence. Wouldn’t it be foolish also to

instruct a baker to put the ingredients into the oven before stirring

them?

This book adheres to the preceding programming procedure

throughout the book, as each program appears. Before you see the

actual program, the thought process required to write the program

appears. The goals of the program are presented first, then these

goals are broken into logical steps, and finally the program is

written.

Designing the program in advance guarantees that the entire

program structure is more accurate and keeps you from having to

make changes later. A builder, for example, knows that a room is

much harder to add after the house is built. If you do not properly

plan every step, it is going to take you longer to create the final,

working program. It is always more difficult to make major changes

after you write your program.

Planning and developing according to these six steps becomes

much more important as you write longer and more complicated

programs. Throughout this book, you learn helpful tips for program

design. Now it’s time to launch into C++, so you can experience the

satisfaction of typing your own program and seeing it run.

Chapter 2 ♦ What Is a Program?

40

Using a Program Editor
The instructions in your C++ program are called the source code.

You type source code into your computer’s memory by using your

program editor. After you type your C++ source code (your pro-

gram), you should save it to a disk file before compiling and running

the program. Most C++ compilers expect C++ source programs to be

stored in files with names ending in .CPP. For example, the follow-

ing are valid filenames for most C++ compilers:

MYPROG.CPP

SALESACT.CPP

EMPLYEE.CPP

ACCREC.CPP

Many C++ compilers include a built-in editor. Two of the most

popular C++ compilers (both conform to the AT&T C++ 2.1 stan-

dard and include their own extended language elements) are

Borland’s C++ and Microsoft’s C/C++ 7.0 compilers. These two

programs run in fully integrated environments that relieve the

programmer from having to worry about finding a separate pro-

gram editor or learning many compiler-specific commands.

Figure 2.1 shows a Borland C++ screen. Across the top of the

screen (as with Microsoft C/C++ 7.0) is a menu that offers pull-

down editing, compiling, and running options. The middle of the

screen contains the body of the program editor, and this is the area

where the program goes. From this screen, you type, edit, compile,

and run your C++ source programs. Without an integrated environ-
ment, you would have to start an editor, type your program, save the

program to disk, exit the editor, run the compiler, and only then run

the compiled program from the operating system. With Borland’s

C++ and Microsoft C/C++ 7.0, you simply type the program into the

editor, then—in one step—you select the proper menu option that

compiles and runs the program.

41

EXAMPLE
C++ By

Figure 2.1. Borland Turbo C++’s integrated environment.

If you do not own an integrated environment such as Borland

C++ or Microsoft C/C++, you have to find a program editor. Word

processors can act as editors, but you have to learn how to save and

load files in a true ASCII text format. It is often easier to use an editor

than it is to make a word processor work like one.

On PCs, DOS Version 5 comes with a nice, full-screen editor

called EDIT. It offers menu-driven commands and full cursor-

control capabilities. EDIT is a simple program to use, and is a good

beginner’s program editor. Refer to your DOS manual or a good

book on DOS, such as MS-DOS 5 QuickStart (Que), for more infor-

mation on this program editor.

Another editor, called EDLIN, is available for earlier versions

of DOS. EDLIN is a line editor that does not allow full-screen cursor

control, and it requires you to learn some cryptic commands. The

advantage to learning EDLIN is that it is always included with all

PCs that use a release of DOS prior to Version 5.

Chapter 2 ♦ What Is a Program?

42

If you use a computer other than a PC, such as a UNIX-based

minicomputer or a mainframe, you have to determine which editors

are available. Most UNIX systems include the vi editor. If you

program on a UNIX operating system, it would be worth your time

to learn vi. It is to UNIX what EDLIN is to PC operating systems, and

is available on almost every UNIX computer in the world.

Mainframe users have other editors available, such as the ISPF

editor. You might have to check with your systems department to

find an editor accessible from your account.

NOTE: Because this book teaches the generic AT&T C++

standard programming language, no attempt is made to tie in

editor or compiler commands—there are too many on the

market to cover them all in one book. As long as you write

programs specific to the AT&T C++, the tools you use to edit,

compile, and run those programs are secondary; your goal of

good programming is the result of whatever applications you

produce.

Using a C++ Compiler
After you type and edit your C++ program’s source code, you

have to compile the program. The process you use to compile your

program depends on the version of C++ and the computer you are

using. Borland C++ and Microsoft C/C++ users need only press Alt-

R to compile and run their programs. When you compile programs

on most PCs, your compiler eventually produces an executable file

with a name beginning with the same name as the source code, but

ends with an .EXE file extension. For example, if your source

program is named GRADEAVG.CPP, the PC would produce a

compiled file called GRADEAVG.EXE, which you could execute at

the DOS prompt by typing the name gradeavg.

43

EXAMPLE
C++ By

NOTE: Each program in this book contains a comment that

specifies a recommended filename for the source program. You

do not have to follow the file-naming conventions used in this

book; the filenames are only suggestions. If you use a main-

frame, you have to follow the dataset-naming conventions set

up by your system administrator. Each program name in the

sample disk (see the order form at the back of the book) matches

the filenames of the program listings.

UNIX users might have to use the cfront compiler. Most cfront

compilers actually convert C++ code into regular C code. The C code

is then compiled by the system’s C compiler. This produces an

executable file whose name (by default) is A.OUT. You can then run

the A.OUT file from the UNIX prompt. Mainframe users generally

have company-standard procedures for compiling C++ source pro-

grams and storing their results in a test account.

Unlike many other programming languages, your C++ pro-

gram must be routed through a preprocessor before it is compiled.

The preprocessor reads preprocessor directives that you enter in the

program to control the program’s compilation. Your C++ compiler

automatically performs the preprocessor step, so it requires no

additional effort or commands to learn on your part.

You might have to refer to your compiler’s reference manuals

or to your company’s system personnel to learn how to compile

programs for your programming environment. Again, learning the

programming environment is not as critical as learning the C++

language. The compiler is just a way to transform your program

from a source code file to an executable file.

Your program must go through one additional stage after

compiling and before running. It is called the linking, or the link
editing stage. When your program is linked, a program called the

linker supplies needed runtime information to the compiled pro-

gram. You can also combine several compiled programs into one

executable program by linking them. Most of the time, however,

Chapter 2 ♦ What Is a Program?

44

your compiler initiates the link editing stage (this is especially true

with integrated compilers such as Borland C++ and Microsoft C/

C++) and you do not have to worry about the process.

Figure 2.2 shows the steps that your C++ compiler and link

editor perform to produce an executable program.

Figure 2.2. Compiling C++ source code into an executable program.

Running a Sample Program
Before delving into the specifics of the C++ language, you

should take a few moments to become familiar with your editor and

C++ compiler. Starting with the next chapter, “Your First C++

Program,” you should put all your concentration into the C++

programming language and not worry about using a specific editor

or compiling environment.

45

EXAMPLE
C++ By

Therefore, start your editor of choice and type Listing 2.1,

which follows, into your computer. Be as accurate as possible—a

single typing mistake could cause the C++ compiler to generate a

series of errors. You do not have to understand the program’s

content at this point; the goal is to give you practice in using your

editor and compiler.

Listing 2.1. Practicing with the editor.

Comment the program with the program name.
Include the header file iostream.h so the output properly works.
Start of the main() function.

Define the BELL constant, which is the computer’s beep.
Initialize the integer variable ctr to 0.
Define the character array fname to hold 20 elements.
Print to the screen What is your first name?.
Accept a string from the keyboard.
Process a loop while the variable ctr is less than five.

Print the string accepted from the keyboard.
Increment the variable ctr by 1.

Print to the screen the character code that sounds the beep.
Return to the operating system.

// Filename: C2FIRST.CPP

// Requests a name, prints the name five times, and rings a bell.

#include <iostream.h>

main()

{

 const char BELL=’\a’; // Constant that rings the bell

 int ctr=0; // Integer variable to count through loop

 char fname[20]; // Define character array to hold name

 cout << “What is your first name? “; // Prompt the user

 cin >> fname; // Get the name from the keyboard

 while (ctr < 5) // Loop to print the name

Chapter 2 ♦ What Is a Program?

46

 { // exactly five times.

 cout << fname << “\n”;

 ctr++;

 }

 cout << BELL; // Ring the terminal’s bell

 return 0;

}

Be as accurate as possible. In most programming languages—

and especially in C++—the characters you type into a program must

be very accurate. In this sample C++ program, for instance, you see

parentheses, (), brackets, [], and braces, {}, but you cannot use them

interchangeably.

The comments (words following the two slashes, //) to the right

of some lines do not have to end in the same place that you see in the

listing. They can be as long or short as you need them to be.

However, you should familiarize yourself with your editor and

learn to space characters accurately so you can type this program

exactly as shown.

Compile the program and execute it. Granted, the first time you

do this you might have to check your reference manuals or contact

someone who already knows your C++ compiler. Do not worry

about damaging your computer: Nothing you do from the keyboard

can harm the physical computer. The worst thing you can do at this

point is erase portions of your compiler software or change the

compiler’s options—all of which can be easily corrected by reload-

ing the compiler from its original source. (It is only remotely likely

that you would do anything like this, even if you are a beginner.)

Handling Errors
Because you are typing instructions for a machine, you must be

very accurate. If you misspell a word, leave out a quotation mark, or

make another mistake, your C++ compiler informs you with an

error message. In Borland C++ and Microsoft C/C++, the error

probably appears in a separate window, as shown in Figure 2.3. The

most common error is a syntax error, and this usually implies a

misspelled word.

47

EXAMPLE
C++ By

Figure 2.3. The compiler reporting a program error.

When you get an error message (or more than one), you must

return to the program editor and correct the error. If you don’t

understand the error, you might have to check your reference

manual or scour your program’s source code until you find the

offending code line.

Getting the Bugs Out

One of the first computers, owned by the military, refused to

print some important data one day. After its programmers

tried for many hours to find the problem in the program, a

programmer by the name of Grace Hopper decided to check

the printer.

She found a small moth lodged between two important wires.

When she removed the moth, the printer started working

perfectly (although the moth did not have the same luck).

Chapter 2 ♦ What Is a Program?

48

Grace Hopper was an admiral from the Navy and, although

she was responsible for developing many important computer

concepts (she was the author of the original COBOL language),

she might be best known for discovering the first computer

bug.

Ever since Admiral Hopper discovered that moth, errors in

computer programs have been known as computer bugs. When

you test your programs, you might have to debug them—get the

bugs (errors) out by correcting your typing errors or changing

the logic so your program does exactly what you want it to do.

After you have typed your program correctly using the editor

(and you get no compile errors), the program should run properly

by asking for your first name, then printing it on-screen five times.

After it prints your name for the fifth time, you hear the computer’s

bell ring.

This example helps to illustrate the difference between a pro-

gram and its output. You must type the program (or load one from

disk), then run the program to see its output.

Review Questions
The answers to the review questions are in Appendix B,

“Answers to Review Questions.”

1. What is a program?

2. What are the two ways to obtain a program that does what

you want?

3. True or false: Computers can think.

4. What is the difference between a program and its output?

5. What do you use for typing C++ programs into the

computer?

49

EXAMPLE
C++ By

6. What filename extension do all C++ programs have?

7. Why is typing the program one of the last steps in the pro-

gramming process?

8. What does the term debug mean?

9. Why is it important to write programs that are compatible

with the AT&T C++?

10. True or false: You must link a program before compiling it.

Summary
After reading this chapter, you should understand the steps

necessary to write a C++ program. You know that planning makes

writing the program much easier, and that your program’s instruc-

tions produce the output only after you run the program.

You also learned how to use your program editor and compiler.

Some program editors are as powerful as word processors. Now

that you know how to run C++ programs, it is time to start learning

the C++ programming language.

Chapter 2 ♦ What Is a Program?

50

