
51

EXAMPLE
C++ By

3

Your First C++
Program

This chapter introduces you to some important C++ language

commands and other elements. Before looking at the language more

specifically, many people like to “walk through” a few simple

programs to get an overall feel for what a C++ program involves.

This is done here. The rest of the book covers these commands and

elements more formally.

This chapter introduces the following topics:

♦ An overview of C++ programs and their structure

♦ Variables and literals

♦ Simple math operators

♦ Screen output format

This chapter introduces a few general tools you need to become

familiar with the C++ programming language. The rest of the book

concentrates on more specific areas of the actual language.

Chapter 3 ♦ Your First C++ Program

52

Looking at a C++ Program
Figure 3.1 shows the outline of a typical small C++ program.

No C++ commands are shown in the figure. Although there is much

more to a program than this outline implies, this is the general

format of the beginning examples in this book.

Figure 3.1. A skeleton outline of a simple C++ program.

To acquaint yourself with C++ programs as fast as possible,

you should begin to look at a program in its entirety. The following

is a listing of a simple example C++ program. It doesn’t do much, but

it enables you to see the general format of C++ programming. The

next few sections cover elements from this and other programs. You

might not understand everything in this program, even after finish-

ing the chapter, but it is a good place to start.

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

Program goes here

Preprocessor directives
go here

Function name

#include <iostream.h>

main()

{

 .

 .

 .

}

Block

53

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 i = 4; // i and j are both assigned integer literals.

 j = i + 7;

 c = ‘A’; // All character literals are

 // enclosed in single quotations.

 x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

 x = x * 4.5; // Change what was in x with a formula.

 // Sends the values of the variables to the screen.

 cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

 return 0; // ALWAYS end programs and functions with return.

 // The 0 returns to the operating system and

 // usually indicates no errors occurred.

}

For now, familiarize yourself with this overall program. See if

you can understand any part or all of it. If you are new to program-

ming, you should know that the computer reads each line of the

program, starting with the first line and working its way down, until

it has completed all the instructions in the program. (Of course, you

first have to compile and link the program, as described in Chap-

ter 2, “What Is a Program?”.)

The output of this program is minimal: It simply displays four

values on-screen after performing some assignments and calcula-

tions of arbitrary values. Just concentrate on the general format at

this point.

The Format of a C++ Program

Unlike some other programming languages, such as COBOL,

C++ is a free-form language, meaning that programming statements

C++ is a free-form
language.

Chapter 3 ♦ Your First C++ Program

54

can start in any column of any line. You can insert blank lines in a

program if you want. This sample program is called C3FIRST.CPP

(you can find the name of each program in this book in the first line

of each program listing). It contains several blank lines to help

separate parts of the program. In a simple program such as this, the

separation is not as critical as it might be in a longer, more complex

program.

Generally, spaces in C++ programs are free-form as well. Your

goal should not be to make your programs as compact as possible.

Your goal should be to make your programs as readable as possi-

ble. For example, the C3FIRST.CPP program shown in the previous

section could be rewritten as follows:

// Filename: C3FIRST.CPP Initial C++ program that demonstrates

// the C++ comments and shows a few variables and their

// declarations.

#include <iostream.h>

main(){int i,j;// These three lines declare four variables.

char c;float x;i=4;// i and j are both assigned integer literals.

j=i+7;c=’A’;// All character literals are enclosed in

//single quotations.

x=9.087;//x requires a floating-point value because it was

//declared as a floating-point variable.

x=x*4.5;//Change what was in x with a formula.

//Sends the values of the variables to the screen.

cout<<i<<“, “<<j<<“, “<<c<<“, “<<x<<“\n”;return 0;// ALWAYS

//end programs and functions with return. The 0 returns to

//the operating system and usually indicates no errors occurred.

}

To your C++ compiler, the two programs are exactly the same,

and they produce exactly the same result. However, to people who

have to read the program, the first style is much more readable.

Readability Is the Key

As long as programs do their job and produce correct output,

who cares how well they are written? Even in today’s world of fast

computers and abundant memory and disk space, you should still

55

EXAMPLE
C++ By

care. Even if nobody else ever looks at your C++ program, you might

have to change it at a later date. The more readable you make your

program, the faster you can find what needs changing, and change

it accordingly.

If you work as a programmer for a corporation, you can almost

certainly expect to modify someone else’s source code, and others

will probably modify yours. In programming departments, it is said

that long-term employees write readable programs. Given this new

global economy and all the changes that face business in the years

ahead, companies are seeking programmers who write for the

future. Programs that are straightforward, readable, abundant with

white space (separating lines and spaces), and devoid of hard-to-read

“tricks” that create messy programs are the most desirable.

Use ample white space so you can have separate lines and

spaces throughout your programs. Notice the first few lines of

C3FIRST.CPP start in the first column, but the body of the program

is indented a few spaces. This helps programmers “zero in” on the

important code. When you write programs that contain several

sections (called blocks), your use of white space helps the reader’s

eye follow and recognize the next indented block.

Uppercase Versus Lowercase

Your uppercase and lowercase letters are much more signifi-

cant in C++ than in most other programming languages. You can see

that most of C3FIRST.CPP is in lowercase. The entire C++ language

is in lowercase. For example, you must type the keywords int, char,

and return in programs using lowercase characters. If you use

uppercase letters, your C++ compiler would produce many errors

and refuse to compile the program until you correct the errors.

Appendix E, “Keyword and Function Reference,” shows a list of

every command in the C++ programming language. You can see

that none of the commands have uppercase letters.

Many C++ programmers reserve uppercase characters for

some words and messages sent to the screen, printer, or disk file;

they use lowercase letters for almost everything else. There is,

however, one exception to this rule in Chapter 4, “Variables and

Literals,” dealing with the const keyword.

Use lowercase
abundantly in C++!

Chapter 3 ♦ Your First C++ Program

56

Braces and main()

All C++ programs require the following lines:

main()

{

The statements that follow main() are executed first. The section

of a C++ program that begins with main(), followed by an opening

brace, {, is called the main function. A C++ program is actually a

collection of functions (small sections of code). The function called

main() is always required and always the first function executed.

In the sample program shown here, almost the entire program

is main() because the matching closing brace that follows main()’s

opening brace is at the end of the program. Everything between two

matching braces is called a block. You read more about blocks in

Chapter 16, “Writing C++ Functions.” For now, you only have to

realize that this sample program contains just one function, main(),

and the entire function is a single block because there is only one

pair of braces.

All executable C++ statements must have a semicolon (;) after

them so C++ is aware that the statement is ending. Because the

computer ignores all comments, do not put semicolons after your

comments. Notice that the lines containing main() and braces do not

end with semicolons either, because these lines simply define the

beginning and ending of the function and are not executed.

As you become better acquainted with C++, you learn when to

include the semicolon and when to leave it off. Many beginning C++

programmers learn quickly when semicolons are required; your

compiler certainly lets you know if you forget to include a semicolon

where one is needed.

Figure 3.2 repeats the sample program shown in Figure 3.1. It

contains additional markings to help acquaint you with these new

terms as well as other items described in the remainder of this

chapter.

All executable C++
statements must
end with a semi-
colon (;).

A C++ block is
enclosed in two
braces.

57

EXAMPLE
C++ By

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

#include <iostream.h>

main()

{

 int i, j; // These three lines declare four variables.

 char c;

 float x;

 i = 4; // i and j are both assigned integer literals.

 j = i + 7;

 c = ‘A’; // All character literals are

 // enclosed in single quotations.

 x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

 x = x * 4.5; // Change what was in x with a formula.

 // Sends the values of the variables to the screen.

 cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

 return 0; // ALWAYS end programs and functions with return.

 // The 0 returns to the operating system and

 // usually indicates no errors occurred.

}End block

Body of program

Variable declarations

Begin block

Comments

Figure 3.2. The parts of the sample program.

Comments in C++

In Chapter 2, “What Is a Program?,” you learned the difference

between a program and its output. Most users of a program do not

see the actual program; they see the output from the execution of the

program’s instructions. Programmers, on the other hand, look at the

program listings, add new routines, change old ones, and update for

advancements in computer equipment.

Preprocessor directive

Chapter 3 ♦ Your First C++ Program

58

As explained earlier, the readability of a program is important

so you and other programmers can look through it easily. Neverthe-

less, no matter how clearly you write C++ programs, you can always

enhance their readability by adding comments throughout.

Comments are messages that you insert in your C++ programs,

explaining what is going on at that point in the program. For

example, if you write a payroll program, you might put a comment

before the check-printing routine that describes what is about to

happen. You never put C++ language statements inside a comment,

because a comment is a message for people—not computers. Your

C++ compiler ignores all comments in every program.

NOTE: C++ comments always begin with a // symbol and end

at the end of the line.

Some programmers choose to comment several lines. Notice in

the sample program, C3FIRST.CPP, that the first three lines are

comment lines. The comments explain the filename and a little about

the program.

Comments also can share lines with other C++ commands. You

can see several comments sharing lines with commands in the

C3FIRST.CPP program. They explain what the individual lines do.

Use abundant comments, but remember who they’re for: people,

not computers. Use comments to help explain your code, but do not

overcomment. For example, even though you might not be familiar

with C++, the following statement is easy: It prints “C++ By Ex-

ample” on-screen.

cout << “C++ By Example”; // Print C++ By Example on-screen.

This comment is redundant and adds nothing to your under-

standing of the line of code. It would be much better, in this case, to

leave out the comment. If you find yourself almost repeating the

C++ code, leave out that particular comment. Not every line of a

C++ program should be commented. Comment only when code

lines need explaining—in English—to the people looking at your

program.

It does not matter if you use uppercase, lowercase, or a mixture

of both in your comments because C++ ignores them. Most C++

Comments tell
people what the
program is doing.

59

EXAMPLE
C++ By

programmers capitalize the first letter of sentences in comments,

just as you would in everyday writing. Use whatever case seems

appropriate for the letters in your message.

C++ can also use C-style comments. These are comments that

begin with /* and end with */. For instance, this line contains a

comment in the C and C++ style:

netpay = grosspay - taxes; /* Compute take-home pay. */

Comment As You Go

Insert your comments as you write your programs. You are

most familiar with your program logic at the time you are

typing the program in the editor. Some people put off adding

comments until after the program is written. More often than

not, however, those comments are never added, or else they are

written halfheartedly.

If you comment as you write your code, you can glance back at

your comments while working on later sections of the pro-

gram—instead of having to decipher the previous code. This

helps you whenever you want to search for something earlier

in the program.

Examples

1. Suppose you want to write a C++ program that produces a

fancy boxed title containing your name with flashing dots

around it (like a marquee). The C++ code to do this might be

difficult to understand. Before such code, you might want to

insert the following comment so others can understand the

code later:

// The following few lines draw a fancy box around

// a name, then display flashing dots around the

// name like a Hollywood movie marquee.

Chapter 3 ♦ Your First C++ Program

60

This would not tell C++ to do anything because a comment

is not a command, but it would make the next few lines of

code more understandable to you and others. The comment

explains in English, for people reading the program, exactly

what the program is getting ready to do.

2. You should also put the disk filename of the program in one

of the first comments. For example, in the C3FIRST.CPP

program shown earlier, the first line is the beginning of a

comment:

// Filename: C3FIRST.CPP

The comment is the first of three lines, but this line tells you

in which disk file the program is stored. Throughout this

book, programs have comments that include a possible

filename under which the program can be stored. They

begin with Cx, where x is the chapter number in which they

appear (for example, C6VARPR.CPP and C10LNIN.CPP).

This method helps you find these programs when they are

discussed in another section of the book.

TIP: It might be a good idea to put your name at the top of a

program in a comment. If people have to modify your program

at a later date, they first might want to consult with you, as the

original programmer, before they change it.

Explaining the Sample
Program

Now that you have an overview of a C++ program, its struc-

ture, and its comments, the rest of this chapter walks you through

the entire sample program. Do not expect to become a C++ expert

just by completing this section—that is what the rest of the book is

for! For now, just sit back and follow this step-by-step description of

the program code.

61

EXAMPLE
C++ By

As described earlier, this sample program contains several

comments. The first three lines of the program are comments:

// Filename: C3FIRST.CPP

// Initial C++ program that demonstrates the C++ comments

// and shows a few variables and their declarations.

This comment lists the filename and explains the purpose of the

program. This is not the only comment in the program; others

appear throughout the code.

The next line beginning with #include is called a preprocessor

directive and is shown here:

#include <iostream.h>

This strange looking statement is not actually a C++ command, but

is a directive that instructs the C++ compiler to load a file from disk

into the middle of the current program. The only purpose for this

discussion is to ensure that the output generated with cout works

properly. Chapter 6, “Preprocessor Directives,” more fully explains

this directive.

The next two lines (following the blank separating line) are

shown here:

main()

{

This begins the main() function. Basically, the main() function’s

opening and closing braces enclose the body of this program and

main()’s instructions that execute. C++ programs often contain more

than one function, but they always contain a function called main().

The main() function does not have to be the first one, but it usually is.

The opening brace begins the first and only block of this program.

When a programmer compiles and runs this program, the

computer looks for main() and starts executing whatever instruction

follows main()’s opening brace. Here are the three lines that follow:

int i, j; // These three lines declare four variables.

char c;

float x;

Chapter 3 ♦ Your First C++ Program

62

These three lines declare variables. A variable declaration describes

variables used in a block of code. Variable declarations describe the

program’s data storage.

A C++ program processes data into meaningful results. All

C++ programs include the following:

♦ Commands

♦ Data

Data comprises variables and literals (sometimes called con-

stants). As the name implies, a variable is data that can change

(become variable) as the program runs. A literal remains the same.

In life, a variable might be your salary. It increases over time (if you

are lucky). A literal would be your first name or social security

number, because each remains with you throughout life and does

not (naturally) change.

Chapter 4, “Variables and Literals,” fully explains these con-

cepts. However, to give you an overview of the sample program’s

elements, the following discussion explains variables and literals in

this program.

C++ enables you to use several kinds of literals. For now, you

simply have to understand that a C++ literal is any number, charac-

ter, word, or phrase. The following are all valid C++ literals:

5.6

-45

‘Q’

“Mary”

18.67643

0.0

As you can see, some literals are numeric and some are

character-based. The single and double quotation marks around

two of the literals, however, are not part of the actual literals. A

single-character literal requires single quotation marks around it; a

string of characters, such as “Mary”, requires double quotation marks.

63

EXAMPLE
C++ By

Look for the literals in the sample program. You find these:

4

7

‘A’

9.087

4.5

A variable is like a box inside your computer that holds

something. That “something” might be a number or a character. You

can have as many variables as needed to hold changing data. After

you define a variable, it keeps its value until you change it or define

it again.

Variables have names so you can tell them apart. You use the

assignment operator, the equal sign (=), to assign values to variables.

The following statement,

sales=25000;

puts the literal value 25000 into the variable named sales. In the

sample program, you find the following variables:

i

j

c

x

The three lines of code that follow the opening brace of the

sample program declare these variables. This variable declaration

informs the rest of the program that two integer variables named i

and j as well as a character variable called c and a floating-point

variable called x appear throughout the program. The terms integer
and floating-point basically refer to two different types of numbers:

Integers are whole numbers, and floating-point numbers contain

decimal points.

The next few statements of the sample program assign values

to these variables.

Chapter 3 ♦ Your First C++ Program

64

i = 4; // i and j are both assigned integer literals.

j = i + 7;

c = ‘A’; // All character literals are

 // enclosed in single quotations.

x = 9.087; // x requires a floating-point value because it

 // was declared as a floating-point variable.

x = x * 4.5; // Change what was in x with a formula.

The first line puts 4 in the integer variable, i. The second line

adds 7 to the variable i’s value to get 11, which then is assigned to (or

put into) the variable called j. The plus sign (+) in C++ works just

like it does in mathematics. The other primary math operators are

shown in Table 3.1.

Table 3.1. The primary math operators.

Operator Meaning Example

+ Addition 4 + 5

– Subtraction 7 – 2

* Multiplication 12 * 6

/ Division 48 / 12

The character literal A is assigned to the c variable. The number

9.087 is assigned to the variable called x, then x is immediately

overwritten with a new value: itself (9.087) multiplied by 4.5. This

helps illustrate why computer designers use an asterisk (*) for

multiplication and not a lowercase x as people generally do to

show multiplication; the computer would confuse the variable x

with the multiplication symbol, x, if both were allowed.

TIP: If mathematical operators are on the right side of the

equal sign, the program completes the math before assigning

the result to a variable.

65

EXAMPLE
C++ By

The next line (after the comment) includes the following

special—and, at first, confusing—statement:

cout << i << “, “ << j << “, “ << c << “, “ << x << “\n”;

When the program reaches this line, it prints the contents of the

four variables on-screen. The important part of this line is that the

four values for i, j, c, and x print on-screen.

The output from this line is

4, 11, A, 40.891499

Because this is the only cout in the program, this is the only

output the sample program produces. You might think the program

is rather long for such a small output. After you learn more about

C++, you should be able to write more useful programs.

The cout is not a C++ command. You might recall from Chapter

2, “What Is a Program?,” that C++ has no built-in input/output

commands. The cout is an operator, described to the compiler in the

#include file called iostream.h, and it sends output to the screen.

C++ also supports the printf() function for formatted output.

You have seen one function already, main(), which is one for which

you write the code. The C++ programming designers have already

written the code for the printf function. At this point, you can think

of printf as a command that outputs values to the screen, but it is

actually a built-in function. Chapter 7, “Simple Input/Output”

describes the printf function in more detail.

NOTE: To differentiate printf from regular C++ commands,

parentheses are used after the name, as in printf(). In C++, all

function names have parentheses following them. Sometimes

these parentheses have something between them, and some-

times they are blank.

The last two lines in the program are shown here:

return 0; // ALWAYS end programs and functions with return.

}

Put a return
statement at the end
of each function.

Chapter 3 ♦ Your First C++ Program

66

The return command simply tells C++ that this function is

finished. C++ returns control to whatever was controlling the pro-

gram before it started running. In this case, because there was only

one function, control is returned either to DOS or to the C++ editing

environment. C++ requires a return value. Most C++ programmers

return a 0 (as this program does) to the operating system. Unless you

use operating-system return variables, you have little use for a

return value. Until you have to be more specific, always return a 0

from main().

Actually, many return statements are optional. C++ would

know when it reached the end of the program without this state-

ment. It is a good programming practice, however, to put a return

statement at the end of every function, including main(). Because

some functions require a return statement (if you are returning

values), it is better to get in the habit of using them, rather than run

the risk of leaving one out when you really need it.

You will sometimes see parentheses around the return value,

as in:

return (0); // ALWAYS end programs and functions with return.

The parentheses are unnecessary and sometimes lead begin-

ning C++ students into thinking that return is a built-in function.

However, the parentheses are recommended when you want to

return an expression. You read more about returning values in

Chapter 19, “Function Return Values and Prototypes.”

The closing brace after the return does two things in this

program. It signals the end of a block (begun earlier with the open-

ing brace), which is the end of the main() function, and it signals

the end of the program.

Review Questions
The answers to the review questions are in Appendix B, aptly

named “Answers to Review Questions.”

1. What must go before each comment in a C++ program?

2. What is a variable?

3. What is a literal?

67

EXAMPLE
C++ By

4. What are four C++ math operators?

5. What operator assigns a variable its value? (Hint: It is called

the assignment operator.)

6. True or false: A variable can consist of only two types:

integers and characters.

7. What is the operator that writes output to the screen?

8. Is the following a variable name or a string literal?

city

9. What, if anything, is wrong with the following C++

statement?

RETURN;

Summary
This chapter focused on teaching you to write helpful and

appropriate comments for your programs. You also learned a little

about variables and literals, which hold the program’s data. Without

them, the term data processing would no longer be meaningful (there

would be no data to process).

Now that you have a feel for what a C++ program looks like, it

is time to begin looking at specifics of the commands. Starting with

the next chapter, you begin to write your own programs. The next

chapter picks up where this one left off; it takes a detailed look at

literals and variables, and better describes their uses and how to

choose their names.

Chapter 3 ♦ Your First C++ Program

68

