
69

EXAMPLE
C++ By

4

Variables and
Literals

To understand data processing with C++, you must understand

how C++ creates, stores, and manipulates data. This chapter teaches

you how C++ handles data by introducing the following topics:

♦ The concepts of variables and literals

♦ The types of C++ variables and literals

♦ Special literals

♦ Constant variables

♦ Naming and using variables

♦ Declaring variables

♦ Assigning values to variables

Now that you have seen an overview of the C++ programming

language, you can begin writing C++ programs. In this chapter, you

begin to write your own programs from scratch.

You learned in Chapter 3, “Your First C++ Program,” that C++

programs consist of commands and data. Datum is the heart of all

C++ programs; if you do not correctly declare or use variables and

literals, your data are inaccurate and your results are going to be

Garbage in, garbage
out!



Chapter 4 ♦ Variables and Literals

70

inaccurate as well. A computer adage says the if you put garbage in,

you are going to get garbage out. This is very true. People usually

blame computers for mistakes, but the computers are not always at

fault. Rather, their data are often not entered properly into their

programs.

This chapter spends a long time focusing on numeric variables

and numeric literals. If you are not a “numbers” person, do not fret.

Working with numbers is the computer’s job. You have to under-

stand only how to tell the computer what you want it to do.

Variables
Variables have characteristics. When you decide your program

needs another variable, you simply declare a new variable and C++

ensures that you get it. In C++, variable declarations can be placed

anywhere in the program, as long as they are not referenced until

after they are declared. To declare a variable, you must understand

the possible characteristics, which follow.

♦ Each variable has a name.

♦ Each variable has a type.

♦ Each variable holds a value that you put there, by assigning

it to that variable.

The following sections explain each of these characteristics in

detail.

Naming Variables

Because you can have many variables in a single program, you

must assign names to them to keep track of them. Variable names are

unique, just as house addresses are unique. If two variables have the

same name, C++ would not know to which you referred when you

request one of them.

Variable names can be as short as a single letter or as long as 32

characters. Their names must begin with a letter of the alphabet but,

after the first letter, they can contain letters, numbers, and under-

score (_ ) characters.



71

EXAMPLE
C++ By

TIP: Spaces are not allowed in a variable name, so use the

underscore character to separate parts of the name.

The following list of variable names are all valid:

salary     aug91_sales     i     index_age     amount

It is traditional to use lowercase letters for C++ variable names.

You do not have to follow this tradition, but you should know that

uppercase letters in variable names are different from lowercase

letters. For example, each of the following four variables is viewed

differently by your C++ compiler.

sales     Sales     SALES     sALES

Be very careful with the Shift key when you type a variable

name. Do not inadvertently change the case of a variable name

throughout a program. If you do, C++ interprets them as distinct

and separate variables.

Variables cannot have the same name as a C++ command or

function. Appendix E, “Keyword and Function Reference,” shows

a list of all C++ command and function names.

The following are invalid variable names:

81_sales     Aug91+Sales     MY AGE     printf

TIP: Although you can call a variable any name that fits the

naming rules (as long as it is not being used by another variable

in the program), you should always use meaningful variable

names. Give your variables names that help describe the values

they are holding.

For example, keeping track of total payroll in a variable called

total_payroll is much more descriptive than using the variable

name XYZ34. Even though both names are valid, total_payroll is

easier to remember and you have a good idea of what the

variable holds by looking at its name.

Do not give variables
the same name as a
command or built-in
function.



Chapter 4 ♦ Variables and Literals

72

Variable Types

Variables can hold different types of data. Table 4.1 lists the

different types of C++ variables. For instance, if a variable holds an

integer, C++ assumes no decimal point or fractional part (the part to

the right of the decimal point) exists for the variable’s value. A large

number of types are possible in C++. For now, the most important

types you should concentrate on are char, int, and float. You can

append the prefix long to make some of them hold larger values than

they would otherwise hold. Using the unsigned prefix enables them

to hold only positive numbers.

Table 4.1. Some C++ variable types.

Declaration Name Type

char Character

unsigned char Unsigned character

signed char Signed character (same as char)

int Integer

unsigned int Unsigned integer

signed int Signed integer (same as int)

short int Short integer

unsigned short int Unsigned short integer

signed short int Signed short integer (same as short int)

long Long integer

long int Long integer (same as long)

signed long int Signed long integer (same as long int)

unsigned long int Unsigned long integer

float Floating-point

double Double floating-point

long double Long double floating-point



73

EXAMPLE
C++ By

The next section more fully describes each of these types. For

now, you have to concentrate on the importance of declaring them

before using them.

Declaring Variables

There are two places you can declare a variable:

♦ Before the code that uses the variable

♦ Before a function name (such as before main() in the

program)

The first of these is the most common, and is used throughout

much of this book. (If you declare a variable before a function name,

it is called a global variable. Chapter 17, “Variable Scope,” addresses

the pros and cons of global variables.) To declare a variable, you

must state its type, followed by its name. In the previous chapter,

you saw a program that declared four variables in the following

way.

Start of the main() function.
Declare the variables i and j as integers.
Declare the variable c as a character.
Declare the variable x as a floating-point variable.

main()

{

   int i, j;    // These three lines declare four variables.

   char c;

   float x;

   // The rest of program follows.

This declares two integer variables named i and j. You have no

idea what is inside those variables, however. You generally cannot

assume a variable holds zero—or any other number—until you

assign it a value. The first line basically tells C++ the following:

“I am going to use two integer variables somewhere in this

program. Be expecting them. I want them named i and j. When I

put a value into i or j, I ensure that the value is an integer.”

Declare all variables
in a C++ program
before you use them.



Chapter 4 ♦ Variables and Literals

74

Without such a declaration, you could not assign i or j a value

later. All variables must be declared before you use them. This does

not necessarily hold true in other programming languages, such as

BASIC, but it does for C++. You could declare each of these two

variables on its own line, as in the following code:

main()

{

   int i;

   int j;

   // The rest of program follows.

You do not gain any readability by doing this, however. Most

C++ programmers prefer to declare variables of the same type on the

same line.

The second line in this example declares a character variable

called c. Only single characters should be placed there. Next, a

floating-point variable called x is declared.

Examples

1. Suppose you had to keep track of a person’s first, middle,

and last initials. Because an initial is obviously a character, it

would be prudent to declare three character variables to

hold the three initials. In C++, you could do that with the

following statement:

main()

{

   char first, middle, last;

   // The rest of program follows.

This statement could go after the opening brace of main(). It

informs the rest of the program that you require these three

character variables.

2. You could declare these three variables also on three sepa-

rate lines, although it does not necessarily improve readabil-

ity to do so. This could be accomplished with:



75

EXAMPLE
C++ By

main()

{

   char first;

   char middle;

   char last;

   // The rest of program follows.

3. Suppose you want to keep track of a person’s age and

weight. If you want to store these values as whole numbers,

they would probably go in integer variables. The following

statement would declare those variables:

main()

{

   int age, weight;

   // The rest of program follows.

Looking at Data Types

You might wonder why it is important to have so many

variable types. After all, a number is just a number. C++ has more

data types, however, than almost all other programming languages.

The variable’s type is critical, but choosing the type among the many

offerings is not as difficult as it might first seem.

The character variable is easy to understand. A character

variable can hold only a single character. You cannot put more than

a single character into a character variable.

NOTE: Unlike many other programming languages, C++

does not have a string variable. Also, you cannot hold more

than a single character in a C++ character variable. To store a

string of characters, you must use an aggregate variable type

that combines other fundamental types, such as an array.

Chapter 5, “Character Arrays and Strings,” explains this more

fully.

Integers hold whole numbers. Although mathematicians might

cringe at this definition, an integer is actually any number that does



Chapter 4 ♦ Variables and Literals

76

not contain a decimal point. All the following expressions are

integers:

45     -932     0     12     5421

Floating-point numbers contain decimal points. They are known

as real numbers to mathematicians. Any time you have to store a

salary, a temperature, or any other number that might have a

fractional part (a decimal portion), you must store it in a floating-

point variable. All the following expressions are floating-point

numbers, and any floating-point variable can hold them:

45.12   -2344.5432   0.00    .04594

Sometimes you have to keep track of large numbers, and

sometimes you have to keep track of smaller numbers. Table 4.2

shows a list of ranges that each C++ variable type can hold.

CAUTION: All true AT&T C++ programmers know that

they cannot count on using the exact values in Table 4.2 on

every computer that uses C++. These ranges are typical on a

PC, but might be much different on another computer. Use this

table only as a guide.

Table 4.2. Typical ranges that C++ variables hold.

Type Range*

char –128 to 127

unsigned char 0 to 255

signed char –128 to 127

int –32768 to 32767

unsigned int 0 to 65535

signed int –32768 to 32767

short int –32768 to 32767

unsigned short int 0 to 65535



77

EXAMPLE
C++ By

signed short int –32768 to 32767

long int –2147483648 to 2147483647

signed long int –2147483648 to 2147483647

float –3.4E–38    to   3.4E+38

double –1.7E–308   to   1.7E+308

long double –3.4E–4932  to   1.1E+4932

* Use this table only as a guide; different compilers and different computers can have different
   ranges.

NOTE: The floating-point ranges in Table 4.2 are shown in

scientific notation. To determine the actual range, take the

number before the E (meaning Exponent) and multiply it by

10 raised to the power after the plus sign. For instance, a

floating-point number (type float) can contain a number as

small as –3.438.

Notice that long integers and long doubles tend to hold larger

numbers (and therefore, have a higher precision) than regular

integers and regular double floating-point variables. This is due to

the larger number of memory locations used by many of the C++

compilers for these data types. Again, this is usually—but not

always—the case.

Do Not Over Type a Variable

If the long variable types hold larger numbers than the regular

ones, you might initially want to use long variables for all your

data. This would not be required in most cases, and would

probably slow your program’s execution.

Type Range*



Chapter 4 ♦ Variables and Literals

78

As Appendix A, “Memory Addressing, Binary, and Hexadeci-

mal Review,” describes, the more memory locations used by

data, the larger that data can be. However, every time your

computer has to access more storage for a single variable (as is

usually the case for long variables), it takes the CPU much

longer to access it, calculate with it, and store it.

Use the long variables only if you suspect your data might

overflow the typical data type ranges. Although the ranges

differ between computers, you should have an idea of whether

you numbers might exceed the computer’s storage ranges.

If you are working with extremely large (or extremely small

and fractional) numbers, you should consider using the long

variables.

Generally, all numeric variables should be signed (the default)

unless you know for certain that your data contain only positive

numbers. (Some values, such as age and distances, are always

positive.) By making a variable an unsigned variable, you gain a

little extra storage range (as explained in Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review”). That range of

values must always be positive, however.

Obviously, you must be aware of what kinds of data your

variables hold. You certainly do not always know exactly what each

variable is holding, but you can have a general idea. For example, in

storing a person’s age, you should realize that a long integer variable

would be a waste of space, because nobody can live to an age that

can’t be stored by a regular integer.

At first, it might seem strange for Table 4.2 to state that

character variables can hold numeric values. In C++, integers and

character variables frequently can be used interchangeably. As

explained in Appendix A, “Memory Addressing, Binary, and Hexa-

decimal Review,” each ASCII table character has a unique number

that corresponds to its location in the table. If you store a number in

a character variable, C++ treats the data as if it were the ASCII

character that matched that number in the table. Conversely, you

can store character data in an integer variable. C++ finds that



79

EXAMPLE
C++ By

character’s ASCII number, and stores that number rather than the

character. Examples that help illustrate this appear later in the

chapter.

Designating Long, Unsigned, and Floating-Point Literals

When you type a number, C++ interprets its type as the

smallest type that can hold that number. For example, if you

print 63, C++ knows that this number fits into a signed integer

memory location. It does not treat the number as a long integer,

because 63 is not large enough to warrant a long integer literal

size.

However, you can append a suffix character to numeric literals

to override the default type. If you put an L at the end of an

integer, C++ interprets that integer as a long integer. The

number 63 is an integer literal, but the number 63L is a long

integer literal.

Assign the U suffix to designate an unsigned integer literal. The

number 63 is, by default, a signed integer literal. If you type 63U,

C++ treats it as an unsigned integer. The suffix UL indicates an

unsigned long literal.

C++ interprets all floating-point literals (numbers that contain

decimal points) as double floating-point literals (double float-

ing-point literals hold larger numbers than floating-point liter-

als). This process ensures the maximum accuracy in such

numbers. If you use the literal 6.82, C++ treats it as a double

floating-point data type, even though it would fit in a regular

float. You can append the floating-point suffix (F) or the long

double floating-point suffix (L) to literals that contain decimal

points to represent a floating-point literal or a long double

floating-point literal.

You may rarely use these suffixes, but if you have to assign a

literal value to an extended or unsigned variable, your literals

might be a little more accurate if you add U, L, UL, or F (their

lowercase equivalents work too) to their ends.



Chapter 4 ♦ Variables and Literals

80

Assigning Values to Variables

Now that you know about the C++ variable types, you are

ready to learn the specifics of assigning values to those variables.

You do this with the assignment statement. The equal sign (=) is used

for assigning values to variables. The format of the assignment

statement is

variable=expression;

The variable is any variable that you declared earlier. The

expression is any variable, literal, expression, or combination that

produces a resulting data type that is the same as the variable’s data

type.

TIP: Think of the equal sign as a left-pointing arrow. Loosely,

the equal sign means you want to take the number, variable, or

expression on the right side of the equal sign and put it into the

variable on the left side of the equal sign.

Examples

1. If you want to keep track of your current age, salary, and

dependents, you could store these values in three C++

variables. You first declare the variables by deciding on

correct types and good names for them. You then assign

values to them. Later in the program, these values might

change (for example, if the program calculates a new pay

increase for you).

Good variable names include age, salary, and dependents.

To declare these three variables, the first part of the main()

function would look like this:

// Declare and store three values.

main()

{

   int age;

   float salary;

   int dependents;



81

EXAMPLE
C++ By

Notice that you do not have to declare all integer variables

together. The next three statements assign values to the

variables.

   age=32;

   salary=25000.00;

   dependents=2;

   // Rest of program follows.

This example is not very long and doesn’t do much, but it

illustrates the using and assigning of values to variables.

2. Do not put commas in values that you assign to variables.

Numeric literals should never contain commas. The follow-

ing statement is invalid:

salary=25,000.00;

3. You can assign variables or mathematical expressions to

other variables. Suppose, earlier in a program, you stored

your tax rate in a variable called tax_rate, then decided to

use your tax rate for your spouse’s rate as well. At the

proper point in the program, you would code the following:

spouse_tax_rate = tax_rate;

(Adding spaces around the equal sign is acceptable to the

C++ compiler, but you do not have to do so.) At this point in

the program, the value in tax_rate is copied to a new variable

named spouse_tax_rate. The value in tax_rate is still there

after this line finishes. The variables were declared earlier in

the program.

If your spouse’s tax rate is 40 percent of yours, you can

assign an expression to the spouse’s variable, as in:

spouse_tax_rate = tax_rate * .40;

Any of the four mathematical symbols you learned in the

previous chapter, as well as the additional ones you learn

later in the book, can be part of the expression you assign to

a variable.



Chapter 4 ♦ Variables and Literals

82

4. If you want to assign character data to a character variable,

you must enclose the character in single quotation marks.

All C++ character literals must be enclosed in single quota-

tion marks.

The following section of a program declares three variables,

then assigns three initials to them. The initials are character

literals because they are enclosed in single quotation marks.

main()

{

   char first, middle, last;

   first = ‘G’;

   middle = ‘M’;

   last = ‘P’;

   // Rest of program follows.

Because these are variables, you can reassign their values

later if the program warrants it.

CAUTION: Do not mix types. C enables programmers to do

this, but C++ does not. For instance, in the middle variable

presented in the previous example, you could not have stored

a floating-point literal:

middle = 345.43244;   // You cannot do this!

If you did so, middle would hold a strange value that would

seem to be meaningless. Make sure that values you assign to

variables match the variable’s type. The only major exception

to this occurs when you assign an integer to a character vari-

able, or a character to an integer variable, as you learn shortly.

Literals
As with variables, there are several types of C++ literals.

Remember that a literal does not change. Integer literals are whole

numbers that do not contain decimal points. Floating-point literals



83

EXAMPLE
C++ By

are numbers that contain a fractional portion (a decimal point with

an optional value to the right of the decimal point).

Assigning Integer Literals

You already know that an integer is any whole number without

a decimal point. C++ enables you to assign integer literals to vari-

ables, use integer literals for calculations, and print integer literals

using the cout operator.

A regular integer literal cannot begin with a leading 0. To C++,

the number 012 is not the number twelve. If you precede an integer

literal with a 0, C++ interprets it as an octal literal. An octal literal is

a base-8 number. The octal numbering system is not used much in

today’s computer systems. The newer versions of C++ retain octal

capabilities for compatibility with previous versions.

A special integer in C++ that is still greatly used today is the

base-16, or hexadecimal, literal. Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review,” describes the hexadecimal num-

bering system. If you want to represent a hexadecimal integer literal,

add the 0x prefix to it. The following numbers are hexadecimal

numbers:

0x10     0x2C4     0xFFFF     0X9

Notice that it does not matter if you use a lowercase or upper-

case letter x after the leading zero, or an uppercase or lowercase

hexadecimal digit (for hex numbers A through F). If you write

business-application programs in C++, you might think you never

have the need for using hexadecimal, and you might be correct. For

a complete understanding of C++ and your computer in general,

however, you should become a little familiar with the fundamentals

of hexadecimal numbers.

Table 4.3 shows a few integer literals represented in their

regular decimal, hexadecimal, and octal notations. Each row con-

tains the same number in all three bases.

An octal integer liter-
al contains a leading
0, and a hexadeci-
mal literal contains a
leading 0x.



Chapter 4 ♦ Variables and Literals

84

Table 4.3. Integer literals represented in three
bases.

Decimal Hexadecimal Octal
(Base 10) (Base 16) (Base 8)

16 0x10 020

65536 0x10000 0100000

25 0x19 031

NOTE: Floating-point literals can begin with a leading zero,

for example, 0.7. They are properly interpreted by C++. Only

integers can be hexadecimal or octal literals.

Your Computer’s Word Size Is Important

If you write many system programs that use hexadecimal

numbers, you probably want to store those numbers in un-
signed variables. This keeps C++ from improperly interpreting

positive numbers as negative numbers.

For example, if your computer stores integers in 2-byte words

(as most PCs do), the hexadecimal literal 0xFFFF represents

either –1 or 65535, depending on how the sign bit is interpreted.

If you declared an unsigned integer, such as

unsigned_int i_num = 0xFFFF;

C++ knows you want it to use the sign bit as data and not as the

sign. If you declared the same value as a signed integer,

however, as in

int i_num = 0xFFFF;   /* The word “signed” is optional.*/

C++ thinks this is a negative number (–1) because the sign bit

is on. (If you were to convert 0xFFFF to binary, you would get

sixteen 1s.) Appendix A, “Memory Addressing, Binary, and

Hexadecimal Review,” discusses these concepts in more detail.



85

EXAMPLE
C++ By

Assigning String Literals

One type of C++ literal, called the string literal, does not have a

matching variable. A string literal is always enclosed in double

quotation marks. Here are examples of string literals:

“C++ Programming”   “123”   “ “   “4323 E. Oak Road”   “x”

Any string of characters between double quotation marks—

even a single character—is considered to be a string literal. A single

space, a word, or a group of words between double quotation marks

are all C++ string literals.

If the string literal contains only numeric digits, it is not a

number; it is a string of numeric digits that you cannot use to

perform mathematics. You can perform math only on numbers, not

on string literals.

NOTE: A string literal is any character, digit, or group of

characters enclosed in double quotation marks. A character

literal is any character enclosed in single quotation marks.

The double quotation marks are never considered part of the

string literal. The double quotation marks surround the string and

simply inform your C++ compiler that the code is a string literal and

not another type of literal.

It is easy to print string literals. Simply put the string literals in

a cout statement. The following code prints a string literal to the

screen:

The following code prints the string literal, C++ By Example.

cout << “C++ By Example”;

Examples

1. The following program displays a simple message on-screen.

No variables are needed because no datum is stored or

calculated.

A string literal is
always enclosed in
double quotation
marks.



Chapter 4 ♦ Variables and Literals

86

// Filename: C4ST1.CPP

// Display a string on-screen.

#include <iostream.h>

main()

{

   cout << “C++ programming is fun!”;

   return 0;

}

Remember to make the last line in your C++ program (be-

fore the closing brace) a return statement.

2. You probably want to label the output from your programs.

Do not print the value of a variable unless you also print a

string literal that describes that variable. The following

program computes sales tax for a sale and prints the tax.

Notice a message is printed first that tells the user what the

next number means.

// Filename: C4ST2.CPP

// Compute sales tax and display it with an appropriate

message.

#include <iostream.h>

main()

{

   float sale, tax;

   float tax_rate = .08;    // Sales tax percentage

   // Determine the amount of the sale.

   sale = 22.54;

   // Compute the sales tax.

   tax = sale * tax_rate;

   // Print the results.

   cout << “The sales tax is “ << tax << “\n”;

   return 0;

}



87

EXAMPLE
C++ By

Here is the output from the program:

The sales tax is 1.8032

You later learn how to print accurately to two decimal places

to make the cents appear properly.

String-Literal Endings

An additional aspect of string literals sometimes confuses

beginning C++ programmers. All string literals end with a zero. You

do not see the zero, but C++ stores the zero at the end of the string

in memory. Figure 4.1 shows what the string “C++ Program” looks like

in memory.

Figure 4.1. In memory, a string literal always ends with 0.

You do not have to worry about putting the zero at the end of

a string literal; C++ does it for you every time it stores a string. If your

program contained the string “C++ Program”, for example, the com-

piler would recognize it as a string literal (from the double quotation

marks) and store the zero at the end.

Null zero



Chapter 4 ♦ Variables and Literals

88

The zero is important to C++. It is called the string delimiter.
Without it, C++ would not know where the string literal ended in

memory. (Remember that the double quotation marks are not stored

as part of the string, so C++ cannot use them to determine where the

string ends.)

The string-delimiting zero is not the same as the character zero.

If you look at the ASCII table in Appendix C, “ASCII Table,” you can

see that the first entry, ASCII number 0, is the null character. (If you

are unfamiliar with the ASCII table, you should read Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review,” for a

brief description.) This string-delimiting zero is different from the

from the character ‘0’, which has an ASCII value of 48.

As explained in Appendix A, “Memory Addressing, Binary,

and Hexadecimal Review,” all memory locations in your computer

actually hold bit patterns for characters. If the letter A is stored in

memory, an A is not actually there; the binary bit pattern for the

ASCII A (01000001) is stored there. Because the binary bit pattern for

the null zero is 00000000, the string-delimiting zero is also called a

binary zero.
To illustrate this further, Figure 4.2 shows the bit patterns for

the following string literal when stored in memory: “I am 30”.

All string literals end
in a null zero (also
called binary zero or
ASCII zero).

String-terminating zero

Figure 4.2. The bit pattern showing that a null zero and a character zero
are different.

Figure 4.2 shows how a string is stored in your computer’s

memory at the binary level. It is important for you to recognize that

the character 0, inside the number 30, is not the same zero (at the bit

level) as the string-terminating null zero. If it were, C++ would think

this string ended after the 3, which would be incorrect.



89

EXAMPLE
C++ By

This is a fairly advanced concept, but you truly have to under-

stand it before continuing. If you are new to computers, reviewing

the material in Appendix A, “Memory Addressing, Binary, and

Hexadecimal Review,” will help you understand this concept.

String Lengths

Many times, your program has to know the length of a string.

This becomes critical when you learn how to accept string input

from the keyboard. The length of a string is the number of characters

up to, but not including, the delimiting null zero. Do not include the

null character in that count, even though you know C++ adds it to

the end of the string.

Examples

1. The following are all string literals:

“0”     “C”     “A much longer string literal”

2. The following table shows some string literals and their

corresponding string lengths.

String Length

”C” 1

”0" 21

”Hello” 5

”” 0

”30 oranges” 10

Assigning Character Literals

All C character literals should be enclosed in single quotation

marks. The single quotation marks are not part of the character, but

they serve to delimit the character. The following are valid C++

character literals:

‘w’  ‘W’  ‘C’  ‘7’  ‘*’  ‘=’  ‘.’  ‘K’

The length of a
string literal does
not include the null
binary zero.



Chapter 4 ♦ Variables and Literals

90

C++ does not append a null zero to the end of character literals.

You should know that the following are different to C++.

‘R’    and    “R”

‘R’ is a single character literal. It is one character long, because

all character literals (and variables) are one character long. “R” is a

string literal because it is delimited by double quotation marks. Its

length is also one, but it includes a null zero in memory so C++

knows where the string ends. Due to this difference, you cannot mix

character literals and character strings. Figure 4.3 shows how these

two literals are stored in memory.

Figure 4.3. The difference in memory between ‘R’ as a character
literal and “R” as a string literal.

All the alphabetic, numeric, and special characters on your

keyboard can be character literals. Some characters, however, can-

not be represented with your keyboard. They include some of

the higher ASCII characters (such as the Spanish Ñ). Because you do

not have keys for every character in the ASCII table, C++ enables you

to represent these characters by typing their ASCII hexadecimal

number inside single quotation marks.

For example, to store the Spanish Ñ in a variable, look up its

hexadecimal ASCII number from Appendix C, “ASCII Table.” You

find that it is A5. Add the prefix \x to it and enclose it in single

quotation marks, so C++ will know to use the special character. You

could do that with the following code:

char sn=’\xA5'; // Puts the Spanish Ñ into a variable called sn.



91

EXAMPLE
C++ By

This is the way to store (or print) any character from the ASCII table,

even if that character does not have a key on your keyboard.

The single quotation marks still tell C++ that a single character

is inside the quotation marks. Even though ‘\xA5’ contains four

characters inside the quotation marks, those four characters repre-

sent a single character, not a character string. If you were to include

those four characters inside a string literal, C++ would treat \xA5 as

a single character in the string. The following string literal,

“An accented a is \xA0”

is a C++ string that is 18 characters, not 21 characters. C++ interprets

the \xA0 character as the á, just as it should.

CAUTION: If you are familiar with entering ASCII charac-

ters by typing their ASCII numbers with the Alt-keypad com-

bination, do not do this in your C++ programs. They might

work on your computer (not all C++ compilers support this),

but your program might not be portable to another computer’s

C++ compiler.

Any character preceded by a backslash, \, (such as these have

been) is called an escape sequence, or escape character. Table 4.4 shows

some additional escape sequences that come in handy when you

want to print special characters.

TIP: Include “\n” in a cout if you want to skip to the next

line when printing your document.

Table 4.4. Special C++ escape-sequence
characters.

Escape Sequence Meaning

\a Alarm (the terminal’s bell)

\b Backspace

\f Form feed (for the printer)

continues



Chapter 4 ♦ Variables and Literals

92

\n Newline (carriage return and line feed)

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash (\)

\? Question mark

\’ Single quotation mark

\” Double quotation mark

\000 Octal number

\xhh Hexadecimal number

\0 Null zero (or binary zero)

Math with C++ Characters

Because C++ links characters so closely with their ASCII num-

bers, you can perform arithmetic on character data. The follow-

ing section of code,

char c;

c = ‘T’ + 5;     // Add five to the ASCII character.

actually stores a Y in c. The ASCII value of the letter T is 84.

Adding 5 to 84 produces 89. Because the variable c is not an

integer variable, but is a character variable, C++ adds the ASCII

character for 89, not the actual number.

Conversely, you can store character literals in integer variables.

If you do, C++ stores the matching ASCII number for that

character. The following section of code

int i=’P’;

Table 4.4. Continued.

Escape Sequence Meaning



93

EXAMPLE
C++ By

does not put a letter P in i because i is not a character variable.

C++ assigns the number 80 in the variable because 80 is the

ASCII number for the letter P.

Examples

1. To print two names on two different lines, include the \n

between them.

Print the name Harry; drop the cursor down to a new line and
print Jerry.

cout << “Harry\nJerry”;

When the program reaches this line, it prints

Harry

Jerry

You also could separate the two names by appending more

of the cout operator, such as:

cout << “Harry” << “\n” << “Jerry”;

Because the \n only takes one byte of storage, you can output

it as a character literal by typing ‘\n’ in place of the preced-

ing “\n”.

2. The following short program rings the bell on your com-

puter by assigning the \a escape sequence to a variable, then

printing that variable.

// Filename: C4BELL.CPP

// Rings the bell

#include <iostream.h>

main()

{

   char bell=’\a’;

   cout << bell;   // No newline needed here.

   return 0;

}



Chapter 4 ♦ Variables and Literals

94

Constant Variables
The term constant variable might seem like a contradiction. After

all, a constant never changes and a variable holds values that

change. In C++ terminology, you can declare variables to be con-

stants with the const keyword. Throughout your program, the

constants act like variables; you can use a constant variable any-

where you can use a variable, but you cannot change constant

variables. To declare a constant, put the keyword const in front of the

variable declaration, for instance:

const int days_of_week = 7;

C++ offers the const keyword as an improvement of the #define

preprocessor directive that C uses. Although C++ supports #define

as well, const enables you to specify constant values with specific

data types.

The const keyword is appropriate when you have data that

does not change. For example, the mathematical π is a good candi-

date for a constant. If you accidently attempt to store a value in a

constant, C++ will let you know. Most C++ programmers choose to

type their constant names in uppercase characters to distinguish

them from regular variables. This is the one time when uppercase

reigns in C++.

NOTE: This book reserves the name constant for C++ pro-

gram constants declared with the const keyword. The term

literal is used for numeric, character, and string data values.

Some books choose to use the terms constant and literal inter-

changeably, but in C++, the difference can be critical.

Example

Suppose a teacher wanted to compute the area of a circle for the

class. To do so, the teacher needs the value of π (mathematically, π
is approximately 3.14159). Because π remains constant, it is a good

candidate for a const keyword, as the following program shows:



95

EXAMPLE
C++ By

Comment for the program filename and description.

     Declare a constant value for π.

     Declare variables for radius and area.

Compute and print the area for both radius values.

// Filename: C4AREAC.CPP

// Computes a circle with radius of 5 and 20.

#include <iostream.h>

main()

{

   const float PI=3.14159;

   float radius = 5;

   float area;

   area = radius * radius * PI;  // Circle area calculation

   cout << “The area is “ << area << “ with a radius of 5.\n”;

   radius = 20;     // Compute area with new radius.

   area = radius * radius * PI;

   cout << “The area is “ << area << “ with a radius of 20.\n”;

   return 0;

}

Review Questions
The answers to the review questions are in Appendix B.

1. Which of the following variable names are valid?

my_name     89_sales     sales_89     a-salary

2. Which of the following literals are characters, strings, inte-

gers, and floating-point literals?

0    -12.0    “2.0”   “X”    ‘X’    65.4    -708    ‘0’



Chapter 4 ♦ Variables and Literals

96

3. How many variables do the following statements declare,

and what are their types?

int i, j, k;

char c, d, e;

float x=65.43;

4. With what do all string literals end?

5. True or false: An unsigned variable can hold a larger value

than a signed variable.

6. How many characters of storage does the following literal

take?

‘\x41’

7. How is the following string stored at the bit level?

“Order 10 of them.”

8. How is the following string (called a null string) stored at the

bit level? (Hint: The length is zero, but there is still a termi-

nating character.)

“”

9. What is wrong with the following program?

#include <iostream.h>

main()

{

   const int age=35;

   cout << age << “\n”;

   age = 52;

   cout << age << “\n”;

   return 0;

}



97

EXAMPLE
C++ By

Review Exercises
Now that you have learned some basic C++ concepts, the

remainder of the book will include this section of review exercises so

you can practice your programming skills.

1. Write the C++ code to store three variables: your weight

(you can fib), height in feet, and shoe size. Declare the

variables, then assign their values in the body of your

program.

2. Rewrite your program from Exercise 1, adding proper cout

statements to print the values to the screen. Use appropriate

messages (by printing string literals) to describe the numbers

that are printed.

3. Write a program that stores a value and prints each type of

variable you learned in this chapter.

4. Write a program that stores a value into every type of vari-

able C++ allows. You must declare each variable at the

beginning of your program. Give them values and print

them.

Summary
A firm grasp of C++’s fundamentals is critical to a better

understanding of the more detailed material that follows. This is one

of the last general-topic chapters in the book. You learned about

variable types, literal types, how to name variables, how to assign

variable values, and how to declare constants. These issues are

critical to understanding the remaining concepts in C++.

This chapter taught you how to store almost every type of

literal into variables. There is no string variable, so you cannot store

string literals in string variables (as you can in other programming

languages). However, you can “fool” C++ into thinking it has a string

variable by using a character array to hold strings. You learn this

important concept in the next chapter.



Chapter 4 ♦ Variables and Literals

98


