
99

EXAMPLE
C++ By

5

Character Arrays
and Strings

Even though C++ has no string variables, you can act as if C++ has

them by using character arrays. The concept of arrays might be new

to you, but this chapter explains how easy they are to declare and

use. After you declare these arrays, they can hold character strings—

just as if they were real string variables. This chapter includes

♦ Character arrays

♦ Comparison of character arrays and strings

♦ Examples of character arrays and strings

After you master this chapter, you are on your way to being

able to manipulate almost every type of variable C++ offers. Ma-

nipulating characters and words is one feature that separates your

computer from a powerful calculator; this capability gives comput-

ers true data-processing capabilities.



Chapter 5 ♦ Character Arrays and Strings

100

Character Arrays
Almost every type of data in C++ has a variable, but there is no

variable for holding character strings. The authors of C++ realized

that you need some way to store strings in variables, but instead of

storing them in a string variable (as some languages such as BASIC

or Pascal do) you must store them in an array of characters.

If you have never programmed before, an array might be new

to you. An array is a list (sometimes called a table) of variables, and

most programming languages allow the use of such lists. Suppose

you had to keep track of the sales records of 100 salespeople. You

could make up 100 variable names and assign a different salesperson’s

sales record to each one.

All those different variable names, however, are difficult to

track. If you were to put them in an array of floating-point variables,

you would have to keep track of only a single name (the array name)

and reference each of the 100 values by a numeric subscript.

The last few chapters of this book cover array processing in

more detail. However, to work with character string data in your

early programs, you have to become familiar with the concept of

character arrays.
Because a string is simply a list of one or more characters, a

character array is the perfect place to hold strings of information.

Suppose you want to keep track of a person’s full name, age, and

salary in variables. The age and salary are easy because there are

variable types that can hold such data. The following code declares

those two variables:

int age;

float salary;

You have no string variable to hold the name, but you can

create an appropriate array of characters (which is actually one or

more character variables in a row in memory) with the following

declaration:

char name[15];

This reserves a character array. An array declaration always

includes brackets ([]) that declare the space for the array. This array

is 15 characters long. The array name is name. You also can assign a

A string literal can be
stored in an array of
characters.



101

EXAMPLE
C++ By

value to the character array at the time you declare the array. The

following declaration statement not only declares the character

array, but also assigns the name “Michael Jones” at the same time:

Declare the character array called name as 15 characters long, and assign
Michael Jones to the array.

char name[15]=”Michael Jones”;

Figure 5.1 shows what this array looks like in memory. Each of

the 15 boxes of the array is called an element. Notice the null zero (the

string-terminating character) at the end of the string. Notice also that

the last character of the array contains no data. You filled only the

first 14 elements of the array with the data and the data’s null zero.

The 15th element actually has a value in it—but whatever follows

the string’s null zero is not a concern.

Figure 5.1. A character array after being declared and assigned a string
value.

You can access individual elements in an array, or you can

access the array as a whole. This is the primary advantage of an array

over the use of many differently named variables. You can assign

values to the individual array elements by putting the elements’

location, called a subscript, in brackets, as follows:

name[3]=’k’;



Chapter 5 ♦ Character Arrays and Strings

102

This overwrites the h in the name Michael with a k. The string now

looks like the one in Figure 5.2.

All array subscripts
begin at 0.

Figure 5.2. The array contents (see Figure 5.1) after changing one of the
elements.

All array subscripts start at zero. Therefore, to overwrite the

first element, you must use 0 as the subscript. Assigning name[3] (as

is done in Figure 5.2) changes the value of the fourth element in the

array.

You can print the entire string—or, more accurately, the entire

array—with a single cout statement, as follows:

cout << name;

Notice when you print an array, you do not include brackets

after the array name. You must be sure to reserve enough characters

in the array to hold the entire string. The following line,

char name[5]=”Michael Jones”;

is incorrect because it reserves only five characters for the array,

whereas the name and its null zero require 14 characters. However,

C++ does give you an error message for this mistake (illegal

initialization).



103

EXAMPLE
C++ By

CAUTION: Always reserve enough array elements to hold the

string, plus its null-terminating character. It is easy to forget the

null character, but don’t do it!

If your string contains 13 characters, it also must have a 14th for

the null zero or it will never be treated like a string. To help eliminate

this error, C++ gives you a shortcut. The following two character

array statements are the same:

char horse[9]=”Stallion”;

and

char horse[]=”Stallion”;

If you assign a value to a character array at the same time you declare

the array, C++ counts the string’s length, adds one for the null zero,

and reserves the array space for you.

If you do not assign a value to an array at the time it is declared,

you cannot declare it with empty brackets. The following statement,

char people[];

does not reserve any space for the array called people. Because you

did not assign a value to the array when you declared it, C++

assumes this array contains zero elements. Therefore, you have no

room to put values in this array later. Most compilers generate an

error if you attempt this.

Character Arrays
Versus Strings

In the previous section, you saw how to put a string in

a character array. Strings can exist in C++ only as string literals, or

as stored information in character arrays. At this point, you have

only to understand that strings must be stored in character arrays.

As you read through this book and become more familiar with

arrays and strings, however, you should become more comfortable

with their use.



Chapter 5 ♦ Character Arrays and Strings

104

NOTE: Strings must be stored in character arrays, but not all

character arrays contain strings.

Look at the two arrays shown in Figure 5.3. The first one, called

cara1, is a character array, but it does not contain a string. Rather than

a string, it contains a list of several characters. The second array,

called cara2, contains a string because it has a null zero at its end.

Figure 5.3. Two character arrays: Cara1 contains characters, and Cara2
contains a character string.

You could initialize these arrays with the following assignment

statements.

Null zero



105

EXAMPLE
C++ By

Declare the array cara1 with 10 individual characters.
Declare the array cara2 with the character string “Excellent”.

char cara1[10]={‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’,

                ‘j’};

char cara2[10]=”Excellent”;

If you want to put only individual characters in an array, you

must enclose the list of characters in braces, as shown. You could

initialize cara1 later in the program, using assignment statements, as

the following code section does.

char cara1[10];

cara1[0]=’a’;

cara1[1]=’b’;

cara1[2]=’c’;

cara1[3]=’d’;

cara1[4]=’e’;

cara1[5]=’f’;

cara1[6]=’g’;

cara1[7]=’h’;

cara1[8]=’i’;

cara1[9]=’j’;   // Last element possible with subscript of nine.

Because the cara1 character array does not contain a null zero,

it does not contain a string of characters. It does contain characters

that can be stored in the array—and used individually—but they

cannot be treated in a program as if they were a string.

CAUTION: You cannot assign string values to character arrays

in a regular assignment statement, except when you first

declare the character arrays.

Because a character array is not a string variable (it can be used

only to hold a string), it cannot go on the left side of an equal (=) sign.

The program that follows is invalid:



Chapter 5 ♦ Character Arrays and Strings

106

#include <iostream.h>

main()

{

   char petname[20];     // Reserve space for the pet’s name.

   petname = “Alfalfa”;  // INVALID!

   cout << petname;      // The program will never get here.

   return;

}

Because the pet’s name was not assigned at the time the character
array was declared, it cannot be assigned a value later. The following

is allowed, however, because you can assign values individually to

a character array:

#include <iostream.h>

main()

{

   char petname[20];   // Reserve space for the pet’s name.

   petname[0]=’A’;  // Assign values one element at a time.

   petname[1]=’l’;

   petname[2]=’f’;

   petname[3]=’a’;

   petname[4]=’l’;

   petname[5]=’f’;

   petname[6]=’a’;

   petname[7]=’\0';  // Needed to ensure this is a string!

   cout <<petname;   // Now the pet’s name prints properly.

   return;

}

The petname character array now holds a string because the last

character is a null zero. How long is the string in petname? It is seven

characters long because the length of a string never includes the null

zero.

You cannot assign more than 20 characters to this array because

its reserved space is only 20 characters. However, you can store any

string of 19 (leaving one for the null zero) or fewer characters to the

array. If you assign the “Alfalfa” string in the array as shown, and

then assign a null zero to petname[3] as in:

petname[3]=’\0';



107

EXAMPLE
C++ By

the string in petname is now only three characters long. You have, in

effect, shortened the string. There are still 20 characters reserved for

petname, but the data inside it is the string “Alf” ending with a null

zero.

There are many other ways to assign a value to a string. You can

use the strcpy() function, for example. This is a built-in function that

enables you to copy a string literal in a string. To copy the “Alfalfa”

pet name into the petname array, you type:

strcpy(petname, “Alfalfa”);  // Copies Alfalfa into the array.

The strcpy() (“string copy”) function assumes that the first

value in the parentheses is a character array name, and that the

second value is a valid string literal or another character array that

holds a string. You must be sure that the first character array in the

parentheses is long enough (in number of reserved elements) to hold

whatever string you copy into it.

NOTE: Place an #include <string.h> line before the main()

function in programs that use strcpy() or any other built-in

string functions mentioned in this book. Your compiler sup-

plies the string.h file to help the strcpy() function work prop-

erly. The #include files such as iostream.h and string.h will be

further explained as you progress through this book.

Other methods of initializing arrays are explored throughout

the rest of this book.

Examples

1. Suppose you want to keep track of your aunt’s name in a

program so you can print it. If your aunt’s name is Ruth Ann

Cooper, you have to reserve at least 16 elements—15 to hold

the name and one to hold the null character. The following

statement properly reserves a character array to hold her

name:

char aunt_name[16];

The strcpy()
function puts string
literals in string
arrays.



Chapter 5 ♦ Character Arrays and Strings

108

2. If you want to put your aunt’s name in the array at the same

time you reserve the array space, you could do it like this:

char aunt_name[16]=”Ruth Ann Cooper”;

You could also leave out the array size and allow C++ to

count the number needed:

char aunt_name[]=”Ruth Ann Cooper”;

3. Suppose you want to keep track of the names of three

friends. The longest name is 20 characters (including the null

zero). You simply have to reserve enough character-array

space to hold each friend’s name. The following code does

the trick:

char friend1[20];

char friend2[20];

char friend3[20];

These array declarations should appear toward the top of

the block, along with any integer, floating-point, or character

variables you have to declare.

4. The next example asks the user for a first and last name. Use

the cin operator (the opposite of cout) to retrieve data from

the keyboard. Chapter 7, “Simple I/O,” more fully explains

the cout and cin operators. The program then prints the

user’s initials on-screen by printing the first character of each

name in the array. The program must print each array’s 0

subscript because the first subscript of any array begins at 0,

not 1.

// Filename: C5INIT.CPP

// Print the user’s initials.

#include <iostream.h>

main()

{

   char first[20];   // Holds the first name

   char last[20];    // Holds the last name

   cout << “What is your first name? \n”;

   cin >> first;



109

EXAMPLE
C++ By

   cout << “What is your last name? \n”;

   cin >> last;

   // Print the initials

   cout << “Your initials are “ << first[0] << “ “

        << last[0];

   return 0;

}

5. The following program takes your three friends’ character

arrays and assigns them string values by using the three

methods shown in this chapter. Notice the extra #include file

used with the string function strcpy().

// Filename: C5STR.CPP

// Store and initialize three character arrays for three

friends.

#include <iostream.h>

#include <string.h>

main()

{

   // Declare all arrays and initialize the first one.

   char friend1[20]=”Jackie Paul Johnson”;

   char friend2[20];

   char friend3[20];

// Use a function to initialize the second array.

   strcpy(friend2, “Julie L. Roberts”);

   friend3[0]=’A’;  // Initialize the last,

   friend3[1]=’d’;  // an element at a time.

   friend3[2]=’a’;

   friend3[3]=’m’;

   friend3[4]=’ ‘;

   friend3[5]=’G’;

   friend3[6]=’.’;

   friend3[7]=’ ‘;

   friend3[8]=’S’;

   friend3[9]=’m’;

   friend3[10]=’i’;



Chapter 5 ♦ Character Arrays and Strings

110

   friend3[11]=’t’;

   friend3[12]=’h’;

   friend3[13]=’\0';

   // Print all three names.

   cout << friend1 << “\n”;

   cout << friend2 << “\n”;

   cout << friend3 << “\n”;

   return 0;

}

The last method of initializing a character array with a

string—one element at a time—is not used as often as the

other methods.

Review Questions
The answers to the review questions are in Appendix B.

1. How would you declare a character array called my_name that

holds the following string literal?

“This is C++”

2. How long is the string in Question 1?

3. How many bytes of storage does the string in Question 1

take?

4. With what do all string literals end?

5. How many variables do the following statements declare,

and what are their types?

char name[25];

char address[25];

6. True or false: The following statement assigns a string literal

to a character array.

myname[]=”Kim Langston”;



111

EXAMPLE
C++ By

7. True or false: The following declaration puts a string in the

character array called city.

char city[]={‘M’, ‘i’, ‘a’, ‘m’, ‘i’, ‘\0’};

8. True or false: The following declaration puts a string in the

character array called city.

char city[]={‘M’, ‘i’, ‘a’, ‘m’, ‘i’};

Review Exercises
1. Write the C++ code to store your weight, height (in feet),

shoe size, and name with four variables. Declare the vari-

ables, then assign their values in the body of your program.

2. Rewrite the program in Exercise 1, adding proper printf()

statements to print the values. Use appropriate messages (by

printing string literals) to describe the printed values.

3. Write a program to store and print the names of your two

favorite television programs. Store these programs in two

character arrays. Initialize one of the strings (assign it the

first program’s name) at the time you declare the array.

Initialize the second value in the body of the program with

the strcpy() function.

4. Write a program that puts 10 different initials in 10 elements

of a single character array. Do not store a null zero. Print the

list backward, one initial on each line.

Summary
This has been a short, but powerful chapter. You learned about

character arrays that hold strings. Even though C++ has no string

variables, character arrays can hold string literals. After you put a

string in a character array, you can print or manipulate it as if it were

a string.



Chapter 5 ♦ Character Arrays and Strings

112

Starting with the next chapter, you begin to hone the C++ skills

you are building. Chapter 6, “Preprocessor Directives,” introduces

preprocessor directives, which are not actually part of the C++

language but help you work with your source code before your

program is compiled.


