
113

EXAMPLE
C++ By

6

Preprocessor
Directives

As you might recall from Chapter 2, “What Is a Program?,” the C++

compiler routes your programs through a preprocessor before it

compiles them. The preprocessor can be called a “pre-compiler”

because it preprocesses and prepares your source code for compil-

ing before your compiler receives it.

Because this preprocess is so important to C++, you should

familiarize yourself with it before learning more specialized com-

mands in the language. Regular C++ commands do not affect the

preprocessor. You must supply special non-C++ commands, called

preprocessor directives, to control the preprocessor. These directives

enable you, for example, to modify your source code before the code

reaches the compiler. To teach you about the C++ preprocessor, this

chapter

♦ Defines preprocessor directives

♦ Introduces the #include preprocessor directive

♦ Introduces the #define preprocessor directive

♦ Provides examples of both

Chapter 6 ♦ Preprocessor Directives

114

Almost every proper C++ program contains preprocessor di-

rectives. This chapter teaches you the two most common: #include

and #define.

Understanding Preprocessor
Directives

Preprocessor directives are commands that you supply to the

preprocessor. All preprocessor directives begin with a pound sign

(#). Never put a semicolon at the end of preprocessor directives,

because they are preprocessor commands and not C++ commands.

Preprocessor directives typically begin in the first column of your

source program. They can begin in any column, of course, but you

should try to be consistent with the standard practice and start them

in the first column wherever they appear. Figure 6.1 illustrates a

program that contains three preprocessor directives.

// Filename: C6PRE.CPP

// C++ program that demonstrates preprocessor directives.

#include <iostream.h>

#define AGE 28

#define MESSAGE “Hello, world”

main()

{

 int i = 10, age; // i is assigned a value at declaration

 // age is still UNDEFINED

 age = 5; // Defines the variable, age, as five.

 i = i * AGE; // AGE is not the same as the variable, age.

 cout << i << “ “ << age << “ “ << AGE << “\n”; // 280 5 28

 cout << MESSAGE; // Prints “Hello world”.

 return 0;

}

Figure 6.1. Program containing three preprocessor directives.

Preprocessor
directives

115

EXAMPLE
C++ By

Preprocessor directives cause your C++ preprocessor to change

your source code, but these changes last only as long as the compi-

lation. When you look at your source code again, the preprocessor

is finished with your file and its changes are no longer in the file.

Your preprocessor does not in any way compile your program or

change your actual C++ commands. This concept confuses some

beginning C++ students, but just remember that your program has

yet to be compiled when your preprocessor directives execute.

It has been said that a preprocessor is nothing more than a text-

editor on your program. This analogy holds true throughout this

chapter.

The #include Directive
The #include preprocessor directive merges a disk file into your

source program. Remember that a preprocessor directive does

nothing more than a word processing command does to your

program; word processors also are capable of file merging. The

format of the #include preprocessor directive follows:

#include <filename>

or

#include “filename”

In the #include directive, the filename must be an ASCII text file

(as your source file must be) located somewhere on a disk. To better

illustrate this rule, it might help to leave C++ for just a moment. The

following example shows the contents of two files on disk. One is

called OUTSIDE and the other is called INSIDE.

These are the contents of the OUTSIDE file:

Now is the time for all good men

#include <INSIDE>

to come to the aid of their country.

Preprocessor
directives
temporarily change
your source code.

Chapter 6 ♦ Preprocessor Directives

116

The INSIDE file contains the following:

A quick brown fox jumped

over the lazy dog.

Assume you can run the OUTSIDE file through the C++

preprocessor, which finds the #include directive and replaces it with

the entire file called INSIDE. In other words, the C++ preprocessor

directive merges the INSIDE file into the OUTSIDE file—at the

#include location—and OUTSIDE expands to include the merged

text. After the preprocessing ends, OUTSIDE looks like this:

Now is the time for all good men

A quick brown fox jumped

over the lazy dog.

to come to the aid of their country.

The INSIDE file remains on disk in its original form. Only the

file containing the #include directive is changed. This change is only

temporary; that is, OUTSIDE is expanded by the included file only

for as long as it takes to compile the program.

A few real-life examples might help, because the OUTSIDE and

INSIDE files are not C++ programs. You might want to include a file

containing common code that you frequently use. Suppose you

print your name and address quite often. You can type the following

few lines of code in every program that prints your name and

address:

cout << “Kelly Jane Peterson\n”;

cout << “Apartment #217\n”;

cout << “4323 East Skelly Drive\n”;

cout << “New York, New York\n”;

cout << “ 10012\n”;

Instead of having to retype the same five lines again and again,

you type them once and save them in a file called MYADD.C. From

then on, you only have to type the single line:

#include <myadd.c>

117

EXAMPLE
C++ By

This not only saves typing, but it also maintains consistency

and accuracy. (Sometimes this kind of repeated text is known as a

boilerplate.)
You usually can use angled brackets, <>, or double quotation

marks, “”, around the included filename with the same results. The

angled brackets tell the preprocessor to look for the include file in a

default include directory, set up by your compiler. The double

quotation marks tell the preprocessor first to look for the include file

in the directory where the source code is stored, and then, to look for

it in the system’s include directory.

Most of the time, you do see angled brackets around the

included filename. If you want to include sections of code in other

programs, be sure to store that code in the system’s include directory

(if you use angled brackets).

Even though #include works well for inserted source code,

there are other ways to include common source code that are more

efficient. You learn about one technique, called writing external
functions, in Chapter 16, “Writing C++ Functions.”

This source code #include example serves well to explain what

the #include preprocessor directive does. Despite this fact, #include

seldom is used to include source code text, but is more often used to

include special system files called header files. These system files

help C++ interpret the many built-in functions that you use. Your

C++ compiler comes with its own header files. When you (or your

system administrator) installed your C++ compiler, these header

files were automatically stored on your hard drive in the system’s

include directory. Their filenames always end in .h to differentiate

them from regular C++ source code.

The most common header file is named iostream.h. This file

gives your C++ compiler needed information about the built-in cout

and cin operators, as well as other useful built-in routines that

perform input and output. The name “iostream.h” stands for input/
output stream header.

At this point, you don’t have to understand the iostream.h file.

You only have to place this file before main() in every program you

write. It is rare that a C++ program does not need the iostream.h file.

Even when the file is not needed, including it does no harm. Your

programs can work without iostream.h as long as they do not use

The #include
directive is most
often used for
system header files.

Chapter 6 ♦ Preprocessor Directives

118

an input or output operator defined there. Nevertheless, your

programs are more accurate and hidden errors come to the surface

much faster if you include this file.

Throughout this book, whenever a new built-in function is

described, the function’s matching header file is included. Because

almost every C++ program you write includes a cout to print to the

screen, almost every program contains the following line:

Include the built-in C++ header file called iostream.h.

#include <iostream.h>

In the last chapter, you saw the strcpy() function. Its header file

is called string.h. Therefore, if you write a program that contains

strcpy(), include its matching header file at the same time you

include <iostream.h>. These appear on separate lines, such as:

#include <iostream.h>

#include <string.h>

The order of your include files does not matter as long as you

include the files before the functions that need them. Most C++

programmers include all their needed header files before main().

These header files are simply text files. If you like, find a header

file such as stdio.h on your hard drive and look at it. The file might

seem complex at this point, but there is nothing “hidden” about it.

Don’t change the header file in any way while looking at it. If you do,

you might have to reload your compiler to restore the file.

Examples

1. The following program is short. It includes the name-and-

address printing routine described earlier. After printing the

name and address, it ends.

// Filename: C6INC1.CPP

// Illustrates the #include preprocessor directives.

#include <iostream.h>

119

EXAMPLE
C++ By

main()

{

#include “myadd.c”

return 0;

}

The double quotation marks are used because the file called

MYADD.C is stored in the same directory as the source file.

Remember that if you type this program into your computer

(after typing and saving the MYADD.C file) and then com-

pile your program, the MYADD.C file is included only as

long as it takes to compile the program. Your compiler does

not see this file. Your compiler acts as if you have typed the

following:

// Filename: C6INCL1.CPP

// Illustrates the #include preprocessor directive.

#include <iostream.h>

main()

{

cout(“Kelly Jane Peterson\n”;

cout(“Apartment #217\n”;

cout(“4323 East Skelly Drive\n”;

cout(“New York, New York\n”;

cout(“ 10012\n”;

return 0;

}

This explains what is meant by a preprocessor: The changes

are made to your source code before it’s compiled. Your

original source code is restored as soon as the compile is

finished. When you look at your program again, it appears

as originally typed, with the #include statement.

2. The following program copies a message into a character

array and prints it to the screen. Because the cout and

strcpy() built-in functions are used, both of their header files

are included.

Chapter 6 ♦ Preprocessor Directives

120

The #define
directive replaces
every occurrence of
a first argument with
a second argument.

// Filename: C6INCL3.CPP

// Uses two header files.

#include <iostream.h>

#include <string.h>

main()

{

 char message[20];

 strcpy(message, “This is fun!”);

 cout << message;

 return 0;

}

The #define Directive
The #define preprocessor directive is used in C++ program-

ming, although not nearly as frequently as it is in C. Due to the

const keyword (in C++) that enables you to define variables as

constants, #define is not used as much in C++. Nevertheless, #define

is useful for compatibility to C programs you are converting to C++.

The #define directive might seem strange at first, but it is similar to

a search-and-replace command on a word processor. The format of

#define follows:

#define ARGUMENT1 argument2

where ARGUMENT1 is a single word containing no spaces. Use the same

naming rules for the #define statement’s first argument as for vari-

ables (see Chapter 4, “Variables and Literals”). For the first argu-

ment, it is traditional to use uppercase letters—one of the only uses

of uppercase in the entire C++ language. At least one space separates

ARGUMENT1 from argument2. The argument2 can be any character, word,

or phrase; it also can contain spaces or anything else you can type on

the keyboard. Because #define is a preprocessor directive and not a

C++ command, do not put a semicolon at the end of its expression.

The #define preprocessor directive replaces the occurrence

of ARGUMENT1 everywhere in your program with the contents of

121

EXAMPLE
C++ By

argument2. In most cases, the #define directive should go before main()

(along with any #include directives). Look at the following #define

directive:

Define the AGELIMIT literal to 21.

#define AGELIMIT 21

If your program includes one or more occurrences of the term

AGELIMIT, the preprocessor replaces every one of them with the

number 21. The compiler then reacts as if you actually had typed 21

rather than AGELIMIT, because the preprocessor changes all occur-

rences of AGELIMIT to 21 before your compiler reads the source code.

But, again, the change is only temporary. After your program is

compiled, you see it as you originally typed it, with #define and

AGELIMIT still intact.

AGELIMIT is not a variable, because variables are declared and

assigned values only at the time when your program is compiled

and run. The preprocessor changes your source file before the time

it is compiled.

You might wonder why you would ever have to go to this much

trouble. If you want 21 everywhere AGELIMIT occurs, you could type

21 to begin with! But the advantage of using #define rather than

literals is that if the age limit ever changes (perhaps to 18), you have

to change only one line in the program, not every single occurrence

of the literal 21.

Because #define enables you easily to define and change liter-

als, the replaced arguments of the #define directive are sometimes

called defined literals. (C programmers say that #define “defines

constants,” but C++ programmers rarely use the word “constant”

unless they are discussing the use of const.) You can define any type

of literal, including string literals. The following program contains

a defined string literal that replaces a string in two places.

// Filename: C6DEF1.CPP

// Defines a string literal and uses it twice.

#include <iostream.h>

#define MYNAME “Phil Ward”

main()

The #define
directive creates
defined literals.

Chapter 6 ♦ Preprocessor Directives

122

{

 char name[]=MYNAME;

 cout << “My name is “ << name << “\n”; // Prints the array.

 cout << “My name is “ << MYNAME << “\n”; // Prints the

 // defined literal.

 return 0;

}

The first argument of #define is in uppercase to distinguish it

from variable names in the program. Variables are usually typed in

lowercase. Although your preprocessor and compiler will not con-

fuse the two, other users who look at your program can more quickly

scan through and tell which items are defined literals and which are

not. They will know when they see an uppercase word (if you follow

the recommended standard for this first #define argument) to look at

the top of the program for its actual defined value.

The fact that defined literals are not variables is even more clear

in the following program. This program prints five values. Try to

guess what those five values are before you look at the answer

following the program.

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X1 b+c

#define X2 X1 + X1

#define X3 X2 * c + X1 - d

#define X4 2 * X1 + 3 * X2 + 4 * X3

main()

{

 int b = 2; // Declares and initializes four variables.

 int c = 3;

 int d = 4;

 int e = X4;

 // Prints the values.

 cout << e << “, “ << X1 << “, “ << X2;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

123

EXAMPLE
C++ By

The output from this program is

44 5 10 17 44

If you treated X1, X2, X3, and X4 as variables, you would not

receive the correct answers. X1 through X4 are not variables; they are

defined literals. Before your program is compiled, the preprocessor

reads the first line and changes every occurrence of X1 to b+c. This

occurs before the next #define is processed. Therefore, after the first

#define, the source code looks like this:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X2 b+c + b+c

#define X3 X2 * c + b+c - d

#define X4 2 * b+c + 3 * X2 + 4 * X3

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << X2;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

After the first #define finishes, the second one takes over and

changes every occurrence of X2 to b+c + b+c. Your source code at that

point becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

Chapter 6 ♦ Preprocessor Directives

124

#define X3 b+c + b+c * c + b+c - d

#define X4 2 * b+c + 3 * b+c + b+c + 4 * X3

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << X3 << “, “ << X4 << “\n”;

 return 0;

}

After the second #define finishes, the third one takes over and

changes every occurrence of X3 to b+c + b+c * c + b+c - d. Your source

code then becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

#define X4 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=X4;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << b+c + b+c * c + b+c - d

 << “, “ << X4 << “\n”;

 return 0;

}

125

EXAMPLE
C++ By

The source code is growing rapidly! After the third #define

finishes, the fourth and last one takes over and changes every occur-

rence of X4 to 2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d.

Your source code at this last point becomes:

// Filename: C6DEF2.CPP

// Illustrates that #define literals are not variables.

#include <iostream.h>

main()

{

 int b=2; // Declares and initializes four variables.

 int c=3;

 int d=4;

 int e=2 * b+c + 3 * b+c + b+c + 4 * b+c + b+c * c + b+c - d;

 // Prints the values.

 cout << e << “, “ << b+c << “, “ << b+c + b+c;

 cout << “, “ << b+c + b+c * c + b+c - d

 << “, “ << 2 * b+c + 3 * b+c + b+c + 4 * b+c +

 b+c * c + b+c - d << “\n”;

 return 0;

}

This is what your compiler actually reads. You did not type this

complete listing; you typed the original listing (shown first). The

preprocessor expanded your source code into this longer form, just

as if you had typed it this way.

This is an extreme example, but it serves to illustrate how

#define works on your source code and doesn’t define any variables.

The #define behaves like a word processor’s search-and-replace

command. Due to #define’s behavior, you can even rewrite the C++

language!

If you are used to BASIC, you might be more comfortable

typing PRINT rather than C++’s cout when you want to print on-

screen. If so, the following #define statement,

#define PRINT cout

enables you to print in C++ with these statements:

Chapter 6 ♦ Preprocessor Directives

126

PRINT << “This is a new printing technique\n”;

PRINT << “I could have used cout instead.”\n;

This works because by the time your compiler reads the pro-

gram, it reads only the following:

cout << “This is a new printing technique\n”;

cout << “I could have used cout instead.”\n;

In the next chapter, “Simple Input/Output,” you learn about

two functions sometimes used for input and output called printf()

and scanf(). You can just as easily redefine function names using

#define as you did with cout.

Also, remember that you cannot replace a defined literal if it

resides in another string literal. For example, you cannot use the

following #define statement:

#define AGE

to replace information in this cout:

cout << “AGE”;

because AGE is a string literal, and it prints literally just as it appears

inside the double quotation marks. The preprocessor can replace

only defined literals that do not appear in quotation marks.

Do Not Overdo #define

Many early C programmers enjoyed redefining parts of the

language to suit whatever they were used to in another lan-

guage. The cout to PRINT example was only one example of this.

You can redefine virtually any C++ statement or function to

“look” any way you like.

There is a danger to this, however, so be wary of using #define

for this purpose. Your redefining the language becomes con-

fusing to others who modify your program later. Also, as you

become more familiar with C++, you will naturally use the true

127

EXAMPLE
C++ By

C++ language more and more. When you are comfortable with

C++, older programs that you redefined will be confusing—

even to you!

If you are programming in C++, use the language conventions

that C++ provides. Shy away from trying to redefine com-

mands in the language. Think of the #define directive as a way

to define numeric and string literals. If those literals ever

change, you have to change only one line in your program.

“Just say no” to any temptation to redefine commands and

built-in functions. Better yet, modify any older C code that uses

#define, and replace the #define preprocessor directive with the

more useful const command.

Examples

1. Suppose you want to keep track of your company’s target

sales amount of $55,000.00. That target amount has not

changed for the previous two years. Because it probably will

not change soon (sales are flat), you decide to start using a

defined literal to represent this target amount. Then, if target

sales do change, you just have to change the amount on the

#define line to:

#define TARGETSALES 55000.00

which defines a floating-point literal. You can then assign

TARGETSALES to floating-point variables and print its value, just

as if you had typed 55000.00 throughout your program, as

these lines show:

amt = TARGETSALES

cout << TARGETSALES;

2. If you find yourself defining the same literals in many

programs, file the literals on disk and include them. Then,

you don’t have to type your defined literals at the beginning

Chapter 6 ♦ Preprocessor Directives

128

of every program. If you store these literals in a file called

MYDEFS.C in your program’s directory, you can include the

file with the following #include statement:

#include “mydefs.c”

(To use angled brackets, you have to store the file in your

system’s include directory.)

3. Defined literals are appropriate for array sizes. For example,

suppose you declare an array for a customer’s name. When

you write the program, you know you don’t have a cus-

tomer whose name is longer than 22 characters (including

the null). Therefore, you can do this:

#define CNMLENGTH 22

When you define the array, you can use this:

char cust_name[CNMLENGTH]

Other statements that need the array size also can use

CNMLENGTH.

4. Many C++ programmers define a list of error messages.

Once they define the messages with an easy-to-remember

name, they can print those literals if an error occurs and still

maintain consistency in their programs. The following error

messages (or a similar form) often appear at the beginning of

C++ programs.

#define DISKERR “Your disk drive seems not to be working”

#define PRNTERR “Your printer is not responding”

#define AGEERR “You cannot enter an age that small”

#define NAMEERR “You must enter a full name”

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: You can define variables with the preprocessor

directives.

129

EXAMPLE
C++ By

2. Which preprocessor directive merges another file into your

program?

3. Which preprocessor directive defines literals throughout

your program?

4. True or false: You can define character, string, integer, and

floating-point literals with the #define directive.

5. Which happens first: your program is compiled or pre-

processed?

6. What C++ keyword is used to replace the #define prepro-

cessor directive?

7. When do you use the angled brackets in an #include, and

when do you use double quotation marks?

8. Which are easier to change: defined literals or literals that

you type throughout a program? Why?

9. Which header file should you include in almost every C++

program you write?

10. True or false: The #define in the following:

#define MESSAGE “Please press Enter to continue...”

changes this statement:

cout << “MESSAGE”;

11. What is the output from the following program?

// Filename: C6EXER,C

#include <iostream.h>

#define AMT1 a+a+a

#define AMT2 AMT1 - AMT1

main()

{

 int a=1;

 cout << “Amount is “ << AMT2 << “\n”;

 return 0;

}

Chapter 6 ♦ Preprocessor Directives

130

Even if you get this right, you will appreciate the side effects

of #define. The const keyword (discussed in Chapter 4,

“Variables and Literals”) before a constant variable has none

of the side effects that #define has.

Review Exercises
1. Write a program that prints your name to the screen. Use a

defined literal for the name. Do not use a character array,

and don’t type your actual name inside the cout.

2. Suppose your boss wanted you to write a program that

produced an “exception report.” If the company’s sales are

less than $100,000.00 or more than $750,000.00, your boss

wants your program to print the appropriate message. You

learn how to produce these types of reports later in the book,

but for now just write the #define statements that define

these two floating-point literals.

3. Write the cout statements that print your name and birth

date to the screen. Store these statements in their own file.

Write a second program that includes the first file and

prints your name and birth date. Be sure also to include

<iostream.h>, because the included file contains cout

statements.

4. Write a program that defines the ten digits, 0 through 9, as

literals ZERO through NINE. Add these ten defined digits and

print the result.

Summary
This chapter taught you the #include and #define preprocessor

directives. Despite the fact that these directives are not executed,

they temporarily change your source code by merging and defining

literals into your program.

131

EXAMPLE
C++ By

The next chapter, “Simple Input/Output,” explains input and

output in more detail. There are ways to control precision when

using cin and cout, as well as built-in functions that format input

and output.

Chapter 6 ♦ Preprocessor Directives

132

