
133

EXAMPLE
C++ By

7

Simple
Input/Output

You have already seen the cout operator. It prints values to the

screen. There is much more to cout than you have learned. Using cout

and the screen (the most common output device), you can print

information any way you want it. Your programs also become much

more powerful if you learn to receive input from the keyboard. cin

is an operator that mirrors the cout. Instead of sending output values

to the screen, cin accepts values that the user types at the keyboard.

The cout and cin operators offer the new C++ programmer

input and output operators they can use with relative ease. Both of

these operators have a limited scope, but they give you the ability to

send output from and receive input to your programs. There are

corresponding functions supplied with all C++ compilers called

printf() and scanf(). These functions are still used by C++ program-

mers due to their widespread use in regular C programs.

This chapter introduces you to

♦ The cout operator

♦ Control operators

♦ The cin operator

Chapter 7 ♦ Simple Input/Output

134

♦ The printf() output function

♦ The scanf() input function

You will be surprised at how much more advanced your

programs can be after you learn these input/output operators.

The cout Operator
The cout operator sends data to the standard output device. The

standard output device is usually the screen; you can, however,

redirect standard output to another device. If you are unfamiliar

with device redirection at the operating system level, don’t worry,

you learn more about it in this book. At this point, cout sends all

output to the screen.

The format of the cout is different from those of other C++

commands. The format for cout is

cout << data [<< data];

The data placeholder can be variables, literals, expressions, or

a combination of all three.

Printing Strings

To print a string constant, simply type the string constant after

the cout operator. For example, to print the string, The rain in Spain,

you would simply type this:

Print the sentence “The rain in Spain” to the screen.

cout << “The rain in Spain”;

You must remember, however, that cout does not perform an

automatic carriage return. This means the screen’s cursor appears

directly after the last printed character and subsequent couts begin

thereafter.

To better understand this concept, try to predict the output

from the following three cout operators:

cout sends output
to the screen.

135

EXAMPLE
C++ By

cout << “Line 1”;

cout << “Line 2”;

cout << “Line 3”;

These operators produce the following output:

Line 1Line 2Line 3

which is probably not what you intended. Therefore, you must

include the newline character, \n, whenever you want to move the

cursor to the next line. The following three cout operators produce

a three-line output:

cout << “Line 1\n”;

cout << “Line 2\n”;

cout << “Line 3\n”;

The output from these couts is

Line 1

Line 2

Line 3

The \n character sends the cursor to the next line no matter

where you insert it. The following three cout operators also produce

the correct three-line output:

cout << “Line 1”;

cout << “\nLine 2\n”;

cout “Line 3”;

The second cout prints a newline before it prints anything else.

It then prints its string followed by another newline. The third string

prints on the third line.

You also can print strings stored in character arrays by typing

the array name inside the cout. If you were to store your name in an

array defined as:

char my_name[] = “Lyndon Harris”;

you could print the name with the following cout:

cout << my_name;

Chapter 7 ♦ Simple Input/Output

136

The following section of code prints three string literals on

three different lines:

cout << “Nancy Carson\n”;

cout << “1213 Oak Street\n”;

cout << “Fairbanks, Alaska\n”;

The cout is often used to label output. Before printing an age,

amount, salary, or any other numeric data, you should print a string

constant that tells the user what the number means. The following

cout tells the user that the next number printed is an age. Without this

cout, the user would not know what the number represented.

cout << “Here is the age that was found in our files:”;

You can print a blank line by printing two newline characters,

\n, next to each other after your string, as in:

cout << “Prepare the invoices...\n\n”;

Examples

1. The following program stores a few values in three vari-

ables, then prints the results:

// Filename: C7PRNT1.CPP

// Prints values in variables.

#include <iostream.h>

main()

{

 char first = ‘E’; // Store some character, integer,

 char middle = ‘W’; // and floating-point variable.

 char last = ‘C’;

 int age = 32;

 int dependents = 2;

 float salary = 25000.00;

 float bonus = 575.25;

 // Prints the results.

 cout << first << middle << last;

137

EXAMPLE
C++ By

 cout << age << dependents;

 cout << salary << bonus;

 return 0;

}

2. The last program does not help the user. The output is not

labeled, and it prints on a single line. Here is the same

program with a few messages included and some newline

characters placed where needed:

// Filename: C7PRNT2.CPP

// Prints values in variables with appropriate labels.

#include <iostream.h>

main()

{

 char first = ‘E’; // Store some character, integer,

 char middle = ‘W’; // and floating-point variable.

 char last = ‘C’;

 int age = 32;

 int dependents = 2;

 float salary = 25000.00;

 float bonus = 575.25;

 // Prints the results.

 cout << “Here are the initials:\n”;

 cout << first << middle << last <<“\n”;

 cout << “The age and number of dependents are\n”;

 cout << age << “ “ << dependents << “\n\n”;

 cout << “The salary and bonus are\n”;

 cout << salary << ‘ ‘ << bonus;

 return 0;

}

The output from this program appears below:

Here are the initials:

EWC

The age and number of dependents are

32 2

Chapter 7 ♦ Simple Input/Output

138

The salary and bonus are

25000 575.25

The first floating-point values do not print with zeros, but

the number is correct. The next section shows you how to set

the number of leading and trailing zeros.

3. If you have to print a table of numbers, you can use the \t

tab character to do so. Place the tab character between each

of the printed numbers. The following program prints a list

of team names and number of hits for the first three weeks of

the season:

// Filename: C7TEAM.CPP

// Prints a table of team names and hits for three weeks.

#include <iostream.h>

main()

{

 cout << “Parrots\tRams\tKings\tTitans\tChargers\n”;

 cout << “3\t5\t3\t1\t0\n”;

 cout << “2\t5\t1\t0\t1\n”;

 cout << “2\t6\t4\t3\t0\n”;

 return 0;

}

This program produces the table shown below. You can see

that even though the names are different widths, the num-

bers print correctly beneath them. The \t character forces the

next name or value to the next tab position (every eight

characters).

Parrots Rams Kings Titans Chargers

3 5 3 1 0

2 5 1 0 1

2 6 4 3 0

139

EXAMPLE
C++ By

Control Operators

You have already seen the need for additional program-output

control. All floating-point numbers print with too many decimal

places for most applications. What if you want to print only dollars

and cents (two decimal places), or print an average with a single

decimal place?

You can specify how many print positions to use in printing a

number. For example, the following cout prints the number 456,

using three positions (the length of the data):

cout << 456;

If the 456 were stored in an integer variable, it would still use

three positions to print because the number of digits printed is three.

However, you can specify how many positions to print. The follow-

ing cout prints the number 456 in five positions (with two leading

spaces):

cout << setw(5) << setfill(‘ ‘) << 456;

You typically use the setw manipulator when you want to print

data in uniform columns. Be sure to include the iomanip.h header

file in any programs that use manipulators because iomanip.h

describes how the setw works to the compiler.

The following program shows you the importance of the width

number. Each cout output is described in the comment to its left.

// Filename: C7MOD1.CPP

// Illustrates various integer width cout modifiers.

#include <iostream.h>

#include <iomanip.h>

main()

{ // The output appears below.

 cout << 456 << 456 << 456 << “\n”; // Prints 456456456

 cout << setw(5) << 456 << setw(5) << 456 << setw(5) <<

 456 << “\n”; // Prints 456 456 456

 cout << setw(7) << 456 << setw(7) << 456 << setw(7) <<

 456 << “ \n”; // Prints 456 456 456

 return 0;

}

You can modify the
way numbers print.

Chapter 7 ♦ Simple Input/Output

140

When you use a setw manipulator inside a conversion charac-

ter, C++ right-justifies the number by the width you specify. When

you specify an eight-digit width, C++ prints a value inside those

eight digits, padding the number with leading blanks if the number

does not fill the whole width.

NOTE: If you do not specify a width large enough to hold the

number, C++ ignores your width request and prints the num-

ber in its entirety.

You can control the width of strings in the same manner with

the setw manipulator. If you don’t specify enough width to output

the full string, C++ ignores the width. The mailing list application in the

back of this book uses this technique to print names on mailing labels.

NOTE: setw() becomes more important when you print

floating-point numbers.

setprecision(2) prints a floating-point number with two deci-

mal places. If C++ has to round the fractional part, it does so. The

following cout:

cout << setw(6) << setprecision(2) << 134.568767;

produces the following output:

134.57

Without the setw o r setprecision manipulators, C++ would

have printed:

134.568767

TIP: When printing floating-point numbers, C++ always prints

the entire portion to the left of the decimal (to maintain as much

accuracy as possible) no matter how many positions you

specify. Therefore, many C++ programmers ignore the setw

manipulator for floating-point numbers and only specify the

precision, as in setprecision(2).

141

EXAMPLE
C++ By

Examples

1. If you want to control the width of your data, use a setw

manipulator. The following program is a revision of the

C7TEAM.CPP shown earlier. Instead of using the tab charac-

ter, \t, which is limited to eight spaces, this program uses the

width specifier to set the tabs. It ensures that each column is

10 characters wide.

// Filename: C7TEAMMD.CPP

// Prints a table of team names and hits for three weeks

// using width-modifying conversion characters.

#include <iostream.h>

#include <iomanip.h>

main()

{

 cout << setw(10) << “Parrots” << setw(10) <<

 “Rams” << setw(10) << “Kings” << setw(10) <<

 “Titans” << setw(10) << “Chargers” << “\n”;

 cout << setw(10) << 3 << setw(10) << 5 <<

 setw(10) << 2 << setw(10) << 1 <<

 setw(10) << 0 << “\n”;

 cout << setw(10) << 2 << setw(10) << 5 <<

 setw(10) << 1 << setw(10) << 0 <<

 setw(10) << 1 << “\n”;

 cout << setw(10) << 2 << setw(10) << 6 <<

 setw(10) << 4 << setw(10) << 3 <<

 setw(10) << 0 << “\n”;

 return 0;

}

2. The following program is a payroll program. The output is

in “dollars and cents” because the dollar amounts print

properly to two decimal places.

// Filename: C7PAY1.CPP

// Computes and prints payroll data properly in dollars

// and cents.

Chapter 7 ♦ Simple Input/Output

142

#include <iostream.h>

#include <iomanip.h>

main()

{

 char emp_name[] = “Larry Payton”;

 char pay_date[] = “03/09/92”;

 int hours_worked = 43;

 float rate = 7.75; // Pay per hour

 float tax_rate = .32; // Tax percentage rate

 float gross_pay, taxes, net_pay;

 // Computes the pay amount.

 gross_pay = hours_worked * rate;

 taxes = tax_rate * gross_pay;

 net_pay = gross_pay - taxes;

 // Prints the results.

 cout << “As of: “ << pay_date << “\n”;

 cout << emp_name << “ worked “ << hours_worked <<

 “ hours\n”;

 cout << “and got paid “ << setw(2) << setprecision(2)

 << gross_pay << “\n”;

 cout << “After taxes of: “ << setw(6) << setprecision(2)

 << taxes << “\n”;

 cout << “his take-home pay was $” << setw(8) <<

 setprecision(2) << net_pay << “\n”;

 return 0;

}

The output from this program follows. Remember that the

floating-point variables still hold the full precision (to six

decimal places), as they did in the previous program. The

modifying setw manipulators only affect how the variables

are output, not what is stored in them.

As of: 03/09/92

Larry Payton worked 43 hours

and got paid 333.25

After taxes of: 106.64

his take-home pay was $226.61

143

EXAMPLE
C++ By

3. Most C++ programmers do not use the setw manipulator

when printing dollars and cents. Here is the payroll program

again that uses the shortcut floating-point width method.

Notice the previous three cout statements include no setw

manipulator. C++ automatically prints the full number to

the left of the decimal and prints only two places to the right.

// Filename: C7PAY2.CPP

// Computes and prints payroll data properly

// using the shortcut modifier.

#include <iostream.h>

#include <iomanip.h>

main()

{

 char emp_name[] = “Larry Payton”;

 char pay_date[] = “03/09/92”;

 int hours_worked = 43;

 float rate = 7.75; // Pay per hour

 float tax_rate = .32; // Tax percentage rate

 float gross_pay, taxes, net_pay;

 // Computes the pay amount.

 gross_pay = hours_worked * rate;

 taxes = tax_rate * gross_pay;

 net_pay = gross_pay - taxes;

 // Prints the results.

 cout << “As of: “ << pay_date << “\n”;

 cout << emp_name << “ worked “ << hours_worked <<

 “ hours\n”;

 cout << “and got paid “ << setprecision(2) << gross_pay

 << “\n”;

 cout << “After taxes of: “ << setprecision(2) << taxes

 << “\n”;

 cout << “his take-home pay was “ << setprecision(2) <<

 net_pay << “\n”;

 return 0;

}

Chapter 7 ♦ Simple Input/Output

144

This program’s output is the same as the previous

program’s.

The cin Operator

You now understand how C++ represents data and variables,

and you know how to print the data. There is one additional part of

programming you have not seen: inputting data to your programs.

Until this point, you have not inputted data into a program. All

data you worked with was assigned to variables in the program.

However, this is not always the best way to transfer data to your

programs; you rarely know what your data is when you write your

programs. The data is known only when you run the programs (or

another user runs them).

The cin operator is one way to input from the keyboard. When

your programs reach the line with a cin, the user can enter values

directly into variables. Your program can then process those vari-

ables and produce output. Figure 7.1 illustrates the difference be-

tween cout and cin.

The cin operator
stores keyboard
input in variables.

Figure 7.1. The actions of cout and cin.

145

EXAMPLE
C++ By

The cin Function Fills Variables with Values

There is a major difference between cin and the assignment

statements (such as i = 17;). Both fill variables with values.

However, the assignment statement assigned specific values to

variables at programming time. When you run a program with

assignment statements, you know from the program’s listing

exactly what values go into the variables because you wrote the

program specifically to store those values. Every time you run

the program, the results are exactly the same because the same

values are assigned to the same variables.

You have no idea, when you write programs that use cin, what

values will be assigned to the cin’s variables because their

values are not known until the program runs and the user

enters those values. This means you have a more flexible

program that can be used by a variety of people. Every time the

program is run, different results are created, depending on the

values typed at each cin in the program.

The cin has its drawbacks. Therefore, in the next few chapters

you will use cin until you learn more powerful (and flexible) input

methods. The cin operator looks much like cout. It contains one or

more variables that appear to the right of the operator name. The

format of the cin is

cin >> value [>> values];

The iostream.h header file contains the information C++ needs

to use cin, so include it when using cin.

NOTE: The cin operator uses the same manipulators (setw and

setprecision) as the cout operator.

As mentioned earlier, cin poses a few problems. The cin opera-

tor requires that your user type the input exactly as cin expects it.

Because you cannot control the user’s typing, this cannot be en-

sured. You might want the user to enter an integer value followed

Chapter 7 ♦ Simple Input/Output

146

by a floating-point value and your cin operator call might expect it

too, but your user might decide to enter something else! If this

happens, there is not much you can do because the resulting input

is incorrect and your C++ program has no reliable method for testing

user accuracy. Before every cin, print a prompt that explains exactly

what you expect the user to type.

For the next few chapters, you can assume that the user knows

to enter the proper values, but for your “real” programs, read on for

better methods to receive input, starting with Chapter 21, “Device

and Character Input/Output.”

Examples

1. If you wanted a program that computed a seven percent

sales tax, you could use the cin statement to figure the sales,

compute the tax, and print the results as the following

program shows:

// Filename: C7SLTX1.CPP

// Prompt for a sales amount and print the sales tax.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_sale; // User’s sale amount goes here.

 float stax;

 // Display a message for the user.

 cout << “What is the total amount of the sale? “;

 // Receive the sales amount from user.

 cin >> total_sale;

 // Calculate sales tax.

 stax = total_sale * .07;

The cin operator
requires that the user
type correct input.
This is not always
possible to
guarantee!

147

EXAMPLE
C++ By

 cout << “The sales tax for “ << setprecision(2) <<

 total_sale << “ is “ << setprecision (2) << stax;

 return 0;

}

Because the first cout does not contain a newline character,

\n, the user’s response to the prompt appears to the right of

the question mark.

2. When inputting keyboard strings into character arrays with

cin, you are limited to receiving one word at a time. The cin

does not enable you to type more than one word in a single

character array at a time. The following program asks the

user for his or her first and last name. The program has to

store those two names in two different character arrays

because cin cannot input both names at once. The program

then prints the names in reverse order.

// Filename: C7PHON1.CPP

// Program that requests the user’s name and prints it

// to the screen as it would appear in a phone book.

#include <iostream.h>

#include <iomanip.h>

main()

{

 char first[20], last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 cout << “\n\n”; // Prints two blank lines.

 cout << “In a phone book, your name would look like this:\n”;

 cout << last << “, “ << first;

 return 0;

}

Chapter 7 ♦ Simple Input/Output

148

3. Suppose you want to write a program that does simple

addition for your seven-year-old daughter. The following

program prompts her for two numbers. The program then

waits for her to type an answer. When she gives her answer,

the program displays the correct result so she can see how

well she did.

// Filename: C7MATH.CPP

// Program to help children with simple addition.

// Prompt child for two values after printing

// a title message.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int num1, num2, ans;

 int her_ans;

 cout << “*** Math Practice ***\n\n\n”;

 cout << “What is the first number? “;

 cin >> num1;

 cout << “What is the second number? “;

 cin >> num2;

 // Compute answer and give her a chance to wait for it.

 ans = num1 + num2;

 cout << “\nWhat do you think is the answer? “;

 cin >> her_ans; // Nothing is done with this.

 // Prints answer after a blank line.

 cout << “\n” << num1 << “ plus “ << num2 << “ is “

 << ans << “\n\nHope you got it right!”;

 return 0;

}

149

EXAMPLE
C++ By

printf() and scanf()
Before C++, C programmers had to rely on function calls to

perform input and output. Two of those functions, printf() and

scanf(), are still used frequently in C++ programs, although cout and

cin have advantages over them. printf() (like cout) prints values to

the screen and scanf() (like cin) inputs values from the keyboard.

printf() requires a controlling format string that describes the data

you want to print. Likewise, scanf() requires a controlling format

string that describes the data the program wants to receive from the

keyboard.

NOTE: cout is the C++ replacement to printf() and cin is the

C++ replacement to scanf().

Because you are concentrating on C++, this chapter only briefly

covers printf() and scanf(). Throughout this book, a handful of

programs use these functions to keep you familiar with their format.

printf() and scanf() are not obsolete in C++, but their use will

diminish dramatically when programmers move away from C and

to C++. cout and cin do not require controlling strings that describe

their data; cout and cin are intelligent enough to know how to treat

data. Both printf() and scanf() are limited—especially scanf()—but

they do enable your programs to send output and to receive input.

The printf() Function
printf() sends data to the standard output device, which is

generally the screen. The format of printf() is different from those of

regular C++ commands. The values that go inside the parentheses

vary, depending on the data you are printing. However, as a general

rule, the following printf() format holds true:

printf(control_string [, one or more values]);

Notice printf() always requires a control_string. This is a

string, or a character array containing a string, that determines how

the rest of the values (if any are listed) print. These values can be

variables, literals, expressions, or a combination of all three.

The printf()
function sends
output to the screen.

Chapter 7 ♦ Simple Input/Output

150

TIP: Despite its name, printf() sends output to the screen and

not to the printer.

The easiest data to print with printf() are strings. To print a

string constant, you simply type that string constant inside the

printf() function. For example, to print the string The rain in Spain,

you would simply type the following:

Print the phrase “The rain in Spain” to the screen.

printf(“The rain in Spain”);

printf(), like cout, does not perform an automatic carriage

return. Subsequent printf()s begin next to that last printed charac-

ter. If you want a carriage return, you must supply a newline

character, as so:

printf(“The rain in Spain\n”);

You can print strings stored in character arrays also by typing

the array name inside the printf(). For example, if you were to store

your name in an array defined as:

char my_name[] = “Lyndon Harris”;

you could print the name with this printf():

printf(my_name);

You must include the stdio.h header file when using printf()

and scanf() because stdio.h determines how the input and output

functions work in the compiler. The following program assigns a

message in a character array, then prints that message.

// Filename: C7PS2.CPP

// Prints a string stored in a character array.

#include <stdio.h>

main()

{

 char message[] = “Please turn on your printer”;

 printf(message);

 return 0;

}

151

EXAMPLE
C++ By

Conversion Characters
Inside most printf() control strings are conversion characters.

These special characters tell printf() exactly how the data (following

the characters) are to be interpreted. Table 7.1 shows a list of

common conversion characters. Because any type of data can go

inside the printf()’s parentheses, these conversion characters are

required any time you print more than a single string constant. If you

don’t want to print a string, the string constant must contain at least

one of the conversion characters.

Table 7.1. Common printf() conversion characters.

Conversion

Character Output

%s String of characters (until null zero is reached)

%c Character

%d Decimal integer

%f Floating-point numbers

%u Unsigned integer

%x Hexadecimal integer

%% Prints a percent sign (%)

Note: You can insert an l (lowercase l) or L before the integer and floating-point conversion characters

(such as %ld and %Lf) to indicate that a long integer or long double floating-point is to be printed.

NOTE: Characters other than those shown in the table print

exactly as they appear in the control string.

When you want to print a numeric constant or variable, you

must include the proper conversion character inside the printf()

control string. If i, j, and k are integer variables, you cannot print

them with the printf() that follows.

printf(i,j,k);

Chapter 7 ♦ Simple Input/Output

152

Because printf() is a function and not a command, this printf()

function has no way of knowing what type the variables are. The

results are unpredictable, and you might see garbage on your

screen—if anything appears at all.

When you print numbers, you must first print a control string

that includes the format of those numbers. The following printf()

prints a string. In the output from this line, a string appears with an

integer (%d) and a floating-point number (%f) printed inside that

string.

printf(“I am Betty, I am %d years old, and I make %f\n”,

 35, 34050.25);

This produces the following output:

I am Betty, I am 35 years old, and I make 34050.25

Figure 7.2 shows how C interprets the control string and the

variables that follow. Be sure you understand this example before

moving on. It is the foundation of the printf() function.

Figure 7.2. Control string in action.

You also can print integer and floating-point variables in the

same manner.

Examples

1. The following program stores a few values in three vari-

ables, then prints the results.

153

EXAMPLE
C++ By

// Filename: C7PRNTF.CPP

// Prints values in variables with appropriate labels.

#include <stdio.h>

main()

{

 char first=’E’; // Store some character, integer,

 char middle=’W’; // and floating-point variable.

 char last=’C’;

 int age=32;

 int dependents=2;

 float salary=25000.00;

 float bonus=575.25;

 /* Prints the results. */

 printf(“Here are the initials\n”);

 printf(“%c%c%c\n\n”, first, middle, last);

 printf(“The age and number of dependents are\n”);

 printf(“%d %d\n\n”, age, dependents);

 printf(“The salary and bonus are\n”);

 printf(“%f %f”, salary, bonus);

 return 0;

}

The output from this program is

Here are the initials

EWC

The age and number of dependents are

32 2

The salary and bonus are

25000.000000 575.250000

2. The floating-point values print with too many zeros, of

course, but the numbers are correct. You can limit the num-

ber of leading and trailing zeros that is printed by adding a

width specifier in the control string. For instance, the following

printf() prints the salary and bonus with two decimal places:

printf(“%.2f %.2f”, salary, bonus);

Chapter 7 ♦ Simple Input/Output

154

Make sure your printed values match the control string

supplied with them. The printf() function cannot fix prob-

lems resulting from mismatched values and control strings.

Don’t try to print floating-point values with character-string

control codes. If you list five integer variables in a printf(),

be sure to include five %d conversion characters in the

printf() as well.

Printing ASCII Values

There is one exception to the rule of printing with matching

conversion characters. If you want to print the ASCII value of

a character, you can print that character (whether it is a constant

or a variable) with the integer %d conversion character. Instead

of printing the character, printf() prints the matching ASCII

number for that character.

Conversely, if you print an integer with a %c conversion char-

acter, you see the character that matches that integer’s value

from the ASCII table.

The following printf()s illustrate this fact:

printf(“%c”, 65); // Prints the letter A.

printf(“%d”, ‘A’); // Prints the number 65.

The scanf() Function
The scanf() function reads input from the keyboard. When

your programs reach the line with a scanf(), the user can enter values

directly into variables. Your program can then process the variables

and produce output.

The scanf() function looks much like printf(). It contains a

control string and one or more variables to the right of the control

string. The control string informs C++ exactly what the incoming

keyboard values look like, and what their types are. The format of

scanf() is

scanf(control_string, one or more values);

The scanf()
function stores
keyboard input to
variables.

155

EXAMPLE
C++ By

The scanf() control_string uses almost the same conversion

characters as the printf() control_string, with two slight differences.

You should never include the newline character, \n, in a scanf()

control string. The scanf() function “knows” when the input is

finished when the user presses Enter. If you supply an additional

newline code, scanf() might not terminate properly. Also, always

put a beginning space inside every scanf() control string. This does

not affect the user’s input, but scanf() sometimes requires it to work

properly. Later examples in this chapter clarify this fact.

As mentioned earlier, scanf() poses a few problems. The scanf()

function requires that your user type the input exactly the way

control_string specifies. Because you cannot control your user’s

typing, this cannot always be ensured. For example, you might

want the user to enter an integer value followed by a floating-point

value (your scanf() control string might expect it too), but your user

might decide to enter something else! If this happens, there is not

much you can do. The resulting input is incorrect, but your C

program has no reliable method for testing user accuracy before

your program is run.

CAUTION: The user’s keyboard input values must match, in

number and type, the control string contained in each scanf().

Another problem with scanf() is not as easy for beginners to

understand as the last. The scanf() function requires that you use

pointer variables, not regular variables, in its parentheses. Although

this sounds complicated, it doesn’t have to be. You should have no

problem with scanf()’s pointer requirements if you remember these

two simple rules:

1. Always put an ampersand (&) before variable names inside a

scanf().

2. Never put an ampersand (&) before an array name inside a

scanf().

Despite these strange scanf() rules, you can learn this function

quickly by looking at a few examples.

The scanf()
function requires
that your user type
accurately. This is
not always possible
to guarantee!

Chapter 7 ♦ Simple Input/Output

156

Examples

1. If you want a program that computes a seven percent sales

tax, you could use the scanf() statement to receive the sales,

compute the tax, and print the results as the following

program shows.

// Filename: C7SLTXS.CPP

// Compute a sales amount and print the sales tax.

#include <stdio.h>

main()

{

 float total_sale; // User’s sale amount goes here.

 float stax;

 // Display a message for the user.

 printf(“What is the total amount of the sale? “);

 // Compute the sales amount from user.

 scanf(“ %f”, &total_sale); // Don’t forget the beginning

 // space and an &.

 stax = total_sale * .07; // Calculate the sales tax.

 printf(“The sales tax for %.2f is %.2f”, total_sale, stax);

 return 0;

}

If you run this program, the program waits for you to enter a

value for the total sale. Remember to use the ampersand in

front of the total_sale variable when you enter it in the

scanf() function. After pressing the Enter key, the program

calculates the sales tax and prints the results.

If you entered 10.00 as the sale amount, you would receive

the following output :

The sales tax for 10.00 is 0.70

2. Use the string %s conversion character to input keyboard

strings into character arrays with scanf(). As with cin, you

are limited to inputting one word at a time, because you

157

EXAMPLE
C++ By

cannot type more than one word into a single character array

with scanf(). The following program is similar to

C7PHON1.CPP except the scanf() function, rather than cin,

is used. It must store two names in two different character

arrays, because scanf() cannot input both names at once. The

program then prints the names in reverse order.

// Filename: C7PHON2.CPP

// Program that requests the user’s name and prints it

// to the screen as it would appear in a phone book.

#include <stdio.h>

main()

{

 char first[20], last[20];

 printf(“What is your first name? “);

 scanf(“ %s”, first);

 printf(“What is your last name? “);

 scanf(“ %s”, last);

 printf(“\n\n”); // Prints two blank lines.

 printf(“In a phone book, your name would look like”

 “this:\n”);

 printf(“%s, %s”, last, first);

 return 0;

}

3. How many values are entered with the following scanf(),

and what are their types?

scanf(“ %d %d %f %s”, &i, &j, &k, l);

Review Questions
The answers to the Review Questions are in Appendix B.

] 1. What is the difference between cout and cin?

2. Why is a prompt message important before using cin for

input?

Chapter 7 ♦ Simple Input/Output

158

3. How many values do you enter with the following cin?

cin >> i >> j >> k >> l;

4. Because they both assign values to variables, is there any

difference between assigning values to variables and using

cin to give them values?

5. True or false: The %s conversion character is usually not

required in printf() control strings.

6. Which types of variables do not require the ampersand (&)

character in scanf() functions?

7. What is the output produced by the following cout?

cout << “The backslash \”\\\” character is special”;

8. What is the result of the following cout?

cout << setw(8) << setprecision(3) << 123.456789;

Review Exercises
1. Write a program that prompts the user for his or her name

and weight. Store these values in separate variables and

print them on-screen.

2. Assume you are a college professor and have to average

grades for 10 students. Write a program that prompts you

for 10 different grades, then displays an average of them.

3. Modify the program in Exercise 2 to ask for each student’s

name as well as her grade. Print the grade list to the screen,

with each student’s name and grade in two columns. Make

sure the columns align by using a setw manipulator on the

grade. At the bottom, print the average of the grades. (Hint:
Store the 10 names and 10 grades in different variables with

different names.) This program is easy, but takes thirty or so

lines, plus appropriate comments and prompts. Later, you

learn ways to streamline this program.

159

EXAMPLE
C++ By

4. This exercise tests your understanding of the backslash

conversion character: Write a program that uses cout opera-

tors to produce the following picture on-screen:

 +

 /*\

 |||

 * |||

 ** |||

 /\ __* |||

 / \|| /|||\

 / | / * \

 / |======|\ ***

 | + + | *

 | || |

 ____|_+||+_|______________/================_______

Summary
You now can print almost anything to the screen. By studying

the manipulators and how they behave, you can control your output

more thoroughly than ever before. Also, because you can receive

keyboard values, your programs are much more powerful. No

longer do you have to know your data values when you write the

program. You can ask the user to enter values into variables with cin.

You have the tools to begin writing programs that fit the data

processing model of INPUT->PROCESS->OUTPUT. This chapter

concludes the preliminary discussion of the C++ language. This part

of the book attempted to give you an overview of the language and

to teach you enough of the language elements so you can begin

writing helpful programs.

Chapter 8, “Using C++ Math Operators and Precedence,”

begins a new type of discussion. You learn how C++’s math and

relational operators work on data, and the importance of the prece-

dence table of operators.

Chapter 7 ♦ Simple Input/Output

160

