
163

EXAMPLE
C++ By

8

Using C++ Math
Operators and
Precedence

If you are dreading this chapter because you don’t like math—relax,

C++ does all your math for you! It is a misconception that you have

to be good at math to understand how to program computers. In

fact, programming practice assumes the opposite is true! Your

computer is your “slave,” to follow your instructions, and to do all

the calculations for you. This chapter explains how C++ computes

by introducing you to

♦ Primary math operators

♦ Order of operator precedence

♦ Assignment statements

♦ Mixed data type calculations

♦ Type casting

Chapter 8 ♦ Using C++ Math Operators and Precedence

164

Many people who dislike math actually enjoy learning how the

computer handles it. After learning the math operators and a few

simple ways in which C++ uses them, you should feel comfortable

using calculations in your programs. Computers are fast, and they

can perform math operations much faster than you can!

C++’s Primary Math
Operators

A C++ math operator is a symbol used for adding, subtracting,

multiplying, dividing, and other operations. C++ operators are not

always mathematical in nature, but many are. Table 8.1 lists these

operator symbols and their primary meanings.

Table 8.1. C++ primary operators.

Symbol Meaning

* Multiplication

/ Division and Integer Division

% Modulus or Remainder

+ Addition

- Subtraction

Most of these operators work in the familiar way you expect

them to. Multiplication, addition, and subtraction produce the same

results (and the division operator usually does) as those produced

with a calculator. Table 8.2 illustrates four of these simple operators.

Table 8.2. Typical operator results.

Formula Result

4 * 2 8

64 / 4 16

80 - 15 65

12 + 9 21

165

EXAMPLE
C++ By

Table 8.2 contains examples of binary operations performed with

the four operators. Don’t confuse binary operations with binary
numbers. When an operator is used between two literals, variables,

or a combination of both, it is called a binary operator because it

operates using two values. When you use these operators (when

assigning their results to variables, for example), it does not matter

in C++ whether you add spaces to the operators or not.

CAUTION: For multiplication, use the asterisk (*), not an x as

you might normally do. An x cannot be used as the multiplica-

tion sign because C++ uses x as a variable name. C++ interprets

x as the value of a variable called x.

The Unary Operators

A unary operator operates on, or affects, a single value. For

instance, you can assign a variable a positive or negative number by

using a unary + or –.

Examples

1. The following section of code assigns four variables a posi-

tive or a negative number. The plus and minus signs are all

unary because they are not used between two values.

The variable a is assigned a negative 25 value.
The variable b is assigned a positive 25 value.
The variable c is assigned a negative a value.
The variable d is assigned a positive b value.

a = -25;// Assign ‘a’ a negative 25.

b = +25;// Assign ‘b’ a positive 25 (+ is not needed).

c = -a; // Assign ‘c’ the negative of ‘a’ (-25).

d = +b; // Assign ‘d’ the positive of ‘b’ (25, + not needed).

Chapter 8 ♦ Using C++ Math Operators and Precedence

166

2. You generally do not have to use the unary plus sign. C++

assumes a number or variable is positive, even if it has no

plus sign. The following four statements are equivalent to

the previous four, except they do not contain plus signs.

a = -25; // Assign ‘a’ a negative 25.

b = 25; // Assign ‘b’ a positive 25.

c = -a; // Assign ‘c’ the negative of ‘a’ (-25).

d = b; // Assign ‘d’ the positive of ‘b’ (25).

3. The unary negative comes in handy when you want to

negate a single number or variable. The negative of a nega-

tive is positive. Therefore, the following short program

assigns a negative number (using the unary –) to a variable,

then prints the negative of that same variable. Because it had

a negative number to begin with, the cout produces a posi-

tive result.

// Filename: C8NEG.CPP

// The negative of a variable that contains a negative value.

#include <iostream.h>

main()

{

 signed int temp=-12; // ‘signed’ is not needed because

 // it is the default.

 cout << -temp << “\n”; // Produces a 12 on-screen.

 return 0;

}

The variable declaration does not need the signed prefix,

because all integer variables are signed by default.

4. If you want to subtract the negative of a variable, make sure

you put a space before the unary minus sign. For example,

the following line:

new_temp + new_temp- -inversion_factor;

temporarily negates the inversion_factor and subtracts that

negated value from new_temp.

167

EXAMPLE
C++ By

Division and Modulus

The division sign, /, and the modulus operator, %, might behave

in ways unfamiliar to you. They’re as easy to use, however, as the

other operators you have just seen.

The forward slash (/) is always used for division. However, it

produces an integer called divide if integer values (literals, variables,

or a combination of both) appear on both sides of the slash. If there

is a remainder, C++ discards it.

The percent sign (%) produces a modulus, or a remainder, of an

integer division. It requires that integers be on both sides of the

symbol, or it does not work.

Examples

1. Suppose you want to compute your weekly pay. The follow-

ing program asks for your yearly pay, divides it by 52, and

prints the results to two decimal places.

// Filename: C8DIV.CPP

// Displays user’s weekly pay.

#include <stdio.h>

main()

{

 float weekly, yearly;

 printf(“What is your annual pay? “); // Prompt user.

 scanf(“%f”, &yearly);

 weekly = yearly/52; // Computes the weekly pay.

 printf(“\n\nYour weekly pay is $%.2f”, weekly);

 return 0;

}

Because a floating-point number is used in the division, C++

produces a floating-point result. Here is a sample output

from such a program:

What is your annual pay? 38000.00

Your weekly pay is $730.77

The modulus (%)
computes
remainders in
division.

Chapter 8 ♦ Using C++ Math Operators and Precedence

168

Because this program used scanf() and printf() (to keep you
familiar with both ways of performing input and output),
the stdio.h header file is included rather than iostream.h.

2. Integer division does not round its results. If you divide two
integers and the answer is not a whole number, C++ ignores
the fractional part. The following printf()s help show this.
The output that results from each printf() appears in the

comment to the right of each line.

printf(“%d \n”, 10/2); // 5 (no remainder)

printf(“%d \n”, 300/100); // 3 (no remainder)

printf(“%d \n”, 10/3); // 3 (discarded remainder)

printf(“%d \n”, 300/165); // 1 (discarded remainder)

The Order of Precedence
Understanding the math operators is the first of two steps toward

understanding C++ calculations. You must also understand the order of
precedence. The order of precedence (sometimes called the math hierarchy
or order of operators) determines exactly how C++ computes formulas.
The precedence of operators is exactly the same concept you learned in
high school algebra courses. (Don’t worry, this is the easy part of
algebra!) To see how the order of precedence works, try to determine

the result of the following simple calculation:

2 + 3 * 2

If you said 10, you are not alone; many people respond with 10.
However, 10 is correct only if you interpret the formula from the left.
What if you calculated the multiplication first? If you took the value
of 3 * 2 and got an answer of 6, then added the 2, you receive an
answer of 8—which is exactly the same answer that C++ computes
(and happens to be the correct way)!

C++ always performs multiplication, division, and modulus
first, then addition and subtraction. Table 8.3 shows the order of the
operators you have seen so far. Of course, there are many more
levels to C++’s precedence table of operators than the ones shown in
Table 8.3. Unlike most computer languages, C++ has 20 levels of
precedence. Appendix D, “C++ Precedence Table,” contains the
complete precedence table. Notice in this appendix that multiplica-
tion, division, and modulus reside on level 8, one level higher than

C++ performs
multiplication,
division, and
modulus before
addition and
subtraction.

169

EXAMPLE
C++ By

level 9’s addition and subtraction. In the next few chapters, you learn
how to use the remainder of this precedence table in your C++

programs.

Table 8.3. Order of precedence for primary operators.

Order Operator

First Multiplication, division, modulus remainder (*, /, %)

Second Addition, subtraction (+, -)

Examples

1. It is easy to follow C++’s order of operators if you follow the

intermediate results one at a time. The three calculations in

Figure 8.1 show you how to do this.

6 + 2 * 3 - 4 / 2

6 + 6 - 4 / 2

6 + 6 - 2

 12 - 2

 10

3 * 4 / 2 + 3 - 1

 12 / 2 + 3 - 1

 6 + 3 - 1

 9 - 1

 8

20 / 3 + 5 % 2

 6 + 5 % 2

 6 + 1

 7

Figure 8.1. C++’s order of operators with lines indicating precedence.

Chapter 8 ♦ Using C++ Math Operators and Precedence

170

2. Looking back at the order of precedence table, you might

notice that multiplication, division, and modulus are on the

same level. This implies there is no hierarchy on that level. If

more than one of these operators appear in a calculation,

C++ performs the math from the left. The same is true of

addition and subtraction—C++ performs the operation on

the extreme left first.

Figure 8.2 illustrates an example showing this process.

10 / 5 * 2 - 2 + 1

 2 * 2 - 2 + 1

 4 - 2 + 1

 2 + 1

 3

Figure 8.2. C++’s order of operators from the left, with lines indicating
precedence.

Because the division appears to the left of the multiplication,
it is computed first.

You now should be able to follow the order of these C++
operators. You don’t have to worry about the math because C++
does the actual work. However, you should understand this order
of operators so you know how to structure your calculations. Now
that you have mastered this order, it’s time to learn how you can

override it with parentheses!

Using Parentheses

If you want to override the order of precedence, you can add
parentheses to the calculation. The parentheses actually reside on a
level above the multiplication, division, and modulus in the prece-
dence table. In other words, any calculation in parentheses—whether
it is addition, subtraction, division, or whatever—is always calcu-
lated before the rest of the line. The other calculations are then
performed in their normal operator order.

171

EXAMPLE
C++ By

The first formula in this chapter, 2 + 3 * 2, produced an 8 because
the multiplication was performed before addition. However, by
adding parentheses around the addition, as in (2 + 3) * 2, the answer
becomes 10.

In the precedence table shown in Appendix D, “C++ Prece-
dence Table,” the parentheses reside on level 3. Because they are
higher than the other levels, the parentheses take precedence over

multiplication, division, and all other operators.

Examples

1. The calculations shown in Figure 8.3 illustrate how paren-

theses override the regular order of operators. These are the

same three formulas shown in the previous section, but their

results are calculated differently because the parentheses

override the normal order of operators.

6 + 2 * (3 - 4) / 2

 6 + 2 * -1 / 2

 6 + -2 / 2

 6 + -1

 5

3 * 4 / 2 + (3 - 1)

3 * 4 / 2 + 2

 12 / 2 + 2

 6 + 2

 8

20 / (3 + 5) % 2

20 / 8 % 2

 2 % 2

 0

Figure 8.3. Example of parentheses as the highest precedence level
with lines indicating precedence.

Parentheses override
the usual order of
math.

Chapter 8 ♦ Using C++ Math Operators and Precedence

172

2. If an expression contains parentheses-within-parentheses,

C++ evaluates the innermost parentheses first. The expres-

sions in Figure 8.4 illustrate this.

5 * (5 + (6 - 2) + 1)

 5 * (5 + 4 + 1)

 5 * (9 + 1)

 5 * 10

 50

Figure 8.4. Precedence example of parentheses-within-parentheses
with lines indicating precedence.

3. The following program produces an incorrect result, even

though it looks as if it will work. See if you can spot the

error!

Comments to identify your program.
Include the header file iostream.h so cout works.
Declare the variables avg, grade1, grade2, and grade3 as floating-
point variables.
The variable avg becomes equal to grade3 divided by 3.0 plus
grade2 plus grade1.
Print to the screen The average is and the average of the three
grade variables.
Return to the operating system.

// Filename: C8AVG1.CPP

// Compute the average of three grades.

#include <iostream.h>

main()

{

 float avg, grade1, grade2, grade3;

 grade1 = 87.5;

 grade2 = 92.4;

 grade3 = 79.6;

173

EXAMPLE
C++ By

 avg = grade1 + grade2 + grade3 / 3.0;

 cout << “The average is “ << avg << “\n”;

 return 0;

}

The problem is that division is performed first. Therefore,

the third grade is divided by 3.0 first, then the other two

grades are added to that result. To correct this problem, you

simply have to add one set of parentheses, as shown in the

following:

// Filename: C8AVG2.CPP

// Compute the average of three grades.

#include <iostream.h>

main()

{

 float avg, grade1, grade2, grade3;

 grade1 = 87.5;

 grade2 = 92.4;

 grade3 = 79.6;

 avg = (grade1 + grade2 + grade3) / 3.0;

 cout << “The average is “ << avg << “\n”;

 return 0;

}

TIP: Use plenty of parentheses in your C++ programs to clarify

the order of operators, even when you don’t have to override

their default order. Using parentheses makes the calculations

easier to understand later, when you might have to modify the

program.

Shorter Is Not Always Better

When you program computers for a living, it is much more

important to write programs that are easy to understand than

programs that are short or include tricky calculations.

Chapter 8 ♦ Using C++ Math Operators and Precedence

174

Maintainability is the computer industry’s word for the chang-

ing and updating of programs previously written in a simple

style. The business world is changing rapidly, and the pro-

grams companies have used for years must often be updated to

reflect this changing environment. Businesses do not always

have the resources to write programs from scratch, so they

usually modify the ones they have.

Years ago when computer hardware was much more expen-

sive, and when computer memories were much smaller, it was

important to write small programs, which often meant relying

on clever, individualized tricks and shortcuts. Unfortunately,

such programs are often difficult to revise, especially if the

original programmers leave and someone else (you!) must

modify the original code.

Companies are realizing the importance of spending time to

write programs that are easy to modify and that do not rely on

tricks, or “quick and dirty” routines that are hard to follow. You

can be a much more valuable programmer if you write clean

programs with ample white space, frequent remarks, and

straightforward code. Use parentheses in formulas if it makes

the formulas clearer, and use variables for storing results in

case you need the same answer later in the program. Break

long calculations into several smaller ones.

Throughout the remainder of this book, you can read tips on

writing maintainable programs. You and your colleagues will

appreciate these tips when you incorporate them in your own

C++ programs.

The Assignment Statements
In C++, the assignment operator, =, behaves differently from

what you might be used to in other languages. So far, you have used

it to assign values to variables, which is consistent with its use in

most other programming languages.

However, the assignment operator also can be used in other

ways, such as multiple assignment statements and compound as-

signments, as the following sections illustrate.

175

EXAMPLE
C++ By

Multiple Assignments

If two or more equal signs appear in an expression, each

performs an assignment. This fact introduces a new aspect of the

precedence order you should understand. Consider the following

expression:

a=b=c=d=e=100;

This might at first seem confusing, especially if you know other

computer languages. To C++, the equal sign always means: Assign

the value on the right to the variable on the left. This right-to-left

order is described in Appendix D’s precedence table. The third

column in the table is labeled Associativity, which describes the

direction of the operation. The assignment operator associates from

the right, whereas some of the other C++ operators associate from

the left.

Because the assignment associates from the right, the previous

expression assigns 100 to the variable named e. This assignment

produces a value, 100, for the expression. In C++, all expressions

produce values, typically the result of assignments. Therefore, 100 is

assigned to the variable d. The value, 100, is assigned to c, then to b,

and finally to a. The old values of these variables are replaced by 100

after the statement finishes.

Because C++ does not automatically set variables to zero before

you use them, you might want to do so before you use the variables

with a single assignment statement. The following section of vari-

able declarations and initializations is performed using multiple

assignment statements.

main()

{

 int ctr, num_emp, num_dep;

 float sales, salary, amount;

 ctr=num_emp=num_dep=0;

 sales=salary=amount=0;

 // Rest of program follows.

In C++, you can include the assignment statement almost

anywhere in a program, even in another calculation. For example,

consider this statement:

Chapter 8 ♦ Using C++ Math Operators and Precedence

176

value = 5 + (r = 9 - c);

which is a perfectly legal C++ statement. The assignment operator

resides on the first level of the precedence table, and always pro-

duces a value. Because its associativity is from the right, the r is

assigned 9 - c because the equal sign on the extreme right is

evaluated first. The subexpression (r = 9 - c) produces a value (and

places that value in r), which is then added to 5 before storing the

answer in value.

Example

Because C++ does not initialize variables to zero before you use

them, you might want to include a multiple assignment operator to

do so before using the variables. The following section of code

ensures that all variables are initialized before the rest of the pro-

gram uses them.

main()

{

 int num_emp, dependents, age;

 float salary, hr_rate, taxrate;

 // Initialize all variables to zero.

 num_emp=dependents=age=hours=0;

 salary=hr_rate=taxrate=0.0;

 // Rest of program follows.

Compound Assignments

Many times in programming, you might want to update the

value of a variable. In other words, you have to take a variable’s

current value, add or multiply that value by an expression, then

reassign it to the original variable. The following assignment state-

ment demonstrates this process:

salary=salary*1.2;

177

EXAMPLE
C++ By

This expression multiplies the old value of salary by 1.2 (in

effect, raising the value in salary by 20 percent), then reassigns it to

salary. C++ provides several operators, called compound operators,
that you can use any time the same variable appears on both sides

of the equal sign. The compound operators are shown in Table 8.4.

Table 8.4. C++’s compound operators.

Operator Example Equivalent

+= bonus+=500; bonus=bonus+500;

-= budget-=50; budget=budget-50;

= salary=1.2; salary=salary*1.2;

/= factor/=.50; factor=factor/.50;

%= daynum%=7; daynum=daynum%7;

The compound operators are low in the precedence table. They

typically are evaluated last or near-last.

Examples

1. You have been storing your factory’s production amount

in a variable called prod_amt, and your supervisor has just

informed you that a new addition has to be applied to the

production value. You could code this update in a statement,

as follows:

prod_amt = prod_amt + 2.6; // Add 2.6 to current production.

Instead of using this formula, use C++’s compound addition

operator by coding it like this:

prod_amt += 2.6; // Add 2.6 to current production.

2. Suppose you are a high school teacher who wants to raise

your students’ grades. You gave a test that was too difficult,

and the grades were not what you expected. If you had

stored each of the student’s grades in variables named

grade1, grade2, grade3, and so on, you can update the grades

in a program with the following section of compound

assignments.

Chapter 8 ♦ Using C++ Math Operators and Precedence

178

grade1*=1.1; // Increase each student’s grade by 10.

percent.

grade2*=1.1;

grade3*=1.1;

// Rest of grade changes follow.

3. The precedence of the compound operators requires impor-

tant consideration when you decide how to code compound

assignments. Notice from Appendix D, “C++ Precedence

Table,” that the compound operators are on level 19, much

lower than the regular math operators. This means you must

be careful how you interpret them.

For example, suppose you want to update the value of a

sales variable with this formula:

4-factor+bonus

You can update the sales variable with the following

statement:

sales = *4 - factor + bonus;

This statement adds the quantity 4-factor+bonus to sales. Due

to operator precedence, this statement is not the same as the

following one:

sales = sales *4 - factor + bonus;

Because the *= operator is much lower in the precedence

table than * or -, it is performed last, and with right-to-left

associativity. Therefore, the following are equivalent, from a

precedence viewpoint:

sales *= 4 - factor + bonus;

and

sales = sales * (4 - factor + bonus);

Mixing Data Types
in Calculations

You can mix data types in C++. Adding an integer and a

floating-point value is mixing data types. C++ generally converts

179

EXAMPLE
C++ By

the smaller of the two types into the other. For instance, if you add

a double to an integer, C++ first converts the integer into a double

value, then performs the calculation. This method produces the

most accurate result possible. The automatic conversion of data

types is only temporary; the converted value is back in its original

data type as soon as the expression is finished.

If C++ converted two different data types to the smaller value’s

type, the higher-precision value is truncated, or shortened, and

accuracy is lost. For example, in the following short program, the

floating-point value of sales is added to an integer called bonus.

Before C++ computes the answer, it converts bonus to floating-point,

which results in a floating-point answer.

// Filename: C8DATA.CPP

// Demonstrate mixed data type in an expression.

#include <stdio.h>

main()

{

 int bonus=50;

 float salary=1400.50;

 float total;

 total=salary+bonus; // bonus becomes floating-point

 // but only temporarily.

 printf(“The total is %.2f”, total);

 return 0;

}

Type Casting

Most of the time, you don’t have to worry about C++’s auto-

matic conversion of data types. However, problems can occur if you

mix unsigned variables with variables of other data types. Due to

differences in computer architecture, unsigned variables do not

always convert to the larger data type. This can result in loss of

accuracy, and even incorrect results.

You can override C++’s default conversions by specifying your

own temporary type change. This process is called type casting.
When you type cast, you temporarily change a variable’s data type

C++ attempts to
convert the smaller
data type to the
larger one in a
mixed data-type
expression.

Chapter 8 ♦ Using C++ Math Operators and Precedence

180

from its declared data type to a new one. There are two formats of

the type cast. They are

(data type) expression

and

data type(expression)

where data type can be any valid C++ data type, such as int or float,

and the expression can be a variable, literal, or an expression that

combines both. The following code temporarily type casts the

integer variable age into a double floating-point variable, so it can be

multiplied by the double floating-point factor. Both formats of the

type cast are illustrated.

The variable age_factor is assigned the value of the variable age (now
treated like a double floating-point variable) multiplied by the variable
factor.

age_factor = (double)age * factor; // Temporarily change age

 // to double.

The second way of type casting adds the parentheses around

the variable rather than the data type, as so:

age_factor = double(age) * factor; // Temporarily change age

 // to double.

NOTE: Type casting by adding the parentheses around the

expression and not the data type is new to C++. C programmers

do not have the option—they must put the data type in paren-

theses. The second method “feels” like a function call and

seems to be more natural for this language. Therefore, becom-

ing familiar with the second method will clarify your code.

181

EXAMPLE
C++ By

Examples

1. Suppose you want to verify the interest calculation used by

your bank on a loan. The interest rate is 15.5 percent, stored

as .155 in a floating-point variable. The amount of interest

you owe is computed by multiplying the interest rate by the

amount of the loan balance, then multiplying that by the

number of days in the year since the loan originated. The

following program finds the daily interest rate by dividing

the annual interest rate by 365, the number of days in a year.

C++ must convert the integer 365 to a floating-point literal

automatically, because it is used in combination with a

floating-point variable.

// Filename: C8INT1.CPP

// Calculate interest on a loan.

#include <stdio.h>

main()

{

 int days=45; // Days since loan origination.

 float principle = 3500.00; // Original loan amount

 float interest_rate=0.155; // Annual interest rate

 float daily_interest; // Daily interest rate

 daily_interest=interest_rate/365; // Compute floating-

 // point value.

 // Because days is int, it too is converted to float.

 daily_interest = principle * daily_interest * days;

 principle+=daily_interest;//Update principle with interest.

 printf(“The balance you owe is %.2f\n”, principle);

 return 0;

}

The output of this program follows:

The balance you owe is 3566.88

Chapter 8 ♦ Using C++ Math Operators and Precedence

182

2. Instead of having C++ perform the conversion, you might

want to type cast all mixed expressions to ensure they

convert to your liking. Here is the same program as in the

first example, except type casts are used to convert the

integer literals to floating-points before they are used.

// Filename: C8INT2.CPP

// Calculate interest on a loan using type casting.

#include <stdio.h>

main()

{

 int days=45; // Days since loan origination.

 float principle = 3500.00; // Original loan amount

 float interest_rate=0.155; // Annual interest rate

 float daily_interest; // Daily interest rate

 daily_interest=interest_rate/float(365); // Type cast days

 // to float.

 // Because days is integer, convert it to float also.

 daily_interest = principle * daily_interest * float(days);

 principle+=daily_interest;// Update principle with interest.

 printf(“The balance you owe is %.2f”, principle);

 return 0;

}

The output from this program is exactly the same as the

previous one.

Review Questions
The answers to the review questions are in Appendix B.

1. What is the result for each of the following expressions?

a. 1 + 2 * 4 / 2

b. (1 + 2) * 4 / 2

c. 1 + 2 * (4 / 2)

183

EXAMPLE
C++ By

2. What is the result for each of the following expressions?

a. 9 % 2 + 1

b. (1 + (10 - (2 + 2)))

3. Convert each of the following formulas into its C++ assign-

ment equivalents.

3 + 3

a. a =

4 + 4

b. x = (a - b)*(a - c)2

a2

c. f =

b3

(8 - x2) (4 * 2 - 1)

d. d = -

 (x - 9) x3

4. Write a short program that prints the area of a circle, when

its radius equals 4 and equals 3.14159. (Hint: The area of a

circle is computed by * radius2.)

5. Write the assignment and printf() statements that print the

remainder of 100/3.

Review Exercises
1. Write a program that prints each of the first eight powers

of 2 (21, 22, 23,...28). Please write comments and include

your name at the top of the program. Print string literals

that describe each answer printed. The first two lines of

your output should look like this:

2 raised to the first power is 2

2 raised to the second power is 4

Chapter 8 ♦ Using C++ Math Operators and Precedence

184

2. Change C8PAY.CPP so it computes and prints a bonus of 15

percent of the gross pay. Taxes are not to be taken out of the

bonus. After printing the four variables, gross_pay, tax_rate,

bonus, and gross_pay, print a check on-screen that looks like

a printed check. Add string literals so it prints the check-

holder and put your name as the payer at the bottom of the

check.

3. Store the weights and ages of three people in variables. Print

a table, with titles, of the weights and ages. At the bottom of

the table, print the averages.

4. Assume that a video store employee works 50 hours. He is

paid $4.50 for the first 40 hours, time-and-a-half (1.5 times

the regular pay rate) for the first five hours over 40, and

double-time pay for all hours over 45. Assuming a 28 per-

cent tax rate, write a program that prints his gross pay, taxes,

and net pay to the screen. Label each amount with appropri-

ate titles (using string literals) and add appropriate com-

ments in the program.

Summary
You now understand C++’s primary math operators and the

importance of the precedence table. Parentheses group operations

so they can override the default precedence levels. Unlike some

other programming languages, every operator in C++ has a mean-

ing, no matter where it appears in an expression. This fact enables

you to use the assignment operator (the equal sign) in the middle of

other expressions.

When you perform math with C++, you also must be aware of

how C++ interprets data types, especially when you mix them in the

same expression. Of course, you can temporarily type cast a variable

or literal so you can override its default data type.

This chapter has introduced you to a part of the book concerned

with C++ operators. The following two chapters (Chapter 9, “Rela-

tional Operators,” and Chapter 10, “Logical Operators”) extend this

introduction to include relational and logical operators. They enable

you to compare data and compute accordingly.

