
185

EXAMPLE
C++ By

9

Relational
Operators

Sometimes you won’t want every statement in your C++ program to

execute every time the program runs. So far, every program in this

book has executed from the top and has continued, line-by-line,

until the last statement completes. Depending on your application,

you might not always want this to happen.

Programs that don’t always execute by rote are known as data-
driven programs. In data-driven programs, the data dictates what

the program does. You would not want the computer to print every

employee’s paychecks for every pay period, for example, because

some employees might be on vacation, or they might be paid on

commission and not have made a sale during that period. Printing

paychecks with zero dollars is ridiculous. You want the computer to

print checks only for employees who have worked.

This chapter shows you how to create data-driven programs.

These programs do not execute the same way every time. This is

possible through the use of relational operators that conditionally
control other statements. Relational operators first “look” at the

literals and variables in the program, then operate according to what

they “find.” This might sound like difficult programming, but it is

actually straightforward and intuitive.

Chapter 9 ♦ Relational Operators

186

This chapter introduces you to

♦ Relational operators

♦ The if statement

♦ The else statement

Not only does this chapter introduce these comparison com-

mands, but it prepares you for much more powerful programs,

possible once you learn the relational operators.

Defining Relational Operators
In addition to the math operators you learned in Chapter 8,

“Using C++ Math Operators and Precedence,” there are also opera-

tors that you use for data comparisons. They are called relational
operators, and their task is to compare data. They enable you to

determine whether two variables are equal, not equal, and which

one is less than the other. Table 9.1 lists each relational operator and

its meaning.

Table 9.1. The relational operators.

Operator Description

== Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

!= Not equal to

The six relational operators form the foundation of data com-

parison in C++ programming. They always appear with two literals,

variables, expressions (or some combination of these), one on each

side of the operator. These relational operators are useful and you

should know them as well as you know the +, -, *, /, and % mathemati-

cal operators.

Relational operators
compare data.

187

EXAMPLE
C++ By

NOTE: Unlike many programming languages, C++ uses a

double equal sign (==) as a test for equality. The single equal

sign (=) is reserved for assignment of values.

Examples

1. Assume that a program initializes four variables as follows:

int a=5;

int b=10;

int c=15;

int d=5;

The following statements are then True:

a is equal to d, so a == d

b is less than c, so b < c

c is greater than a, so c > a

b is greater than or equal to a, so b >= a

d is less than or equal to b, so d <= b

b is not equal to c, so b != c

These are not C++ statements; they are statements of com-

parison (relational logic) between values in the variables.

Relational logic is easy.

Relational logic always produces a True or False result. In

C++, unlike some other programming languages, you can

directly use the True or False result of relational operators

inside other expressions. You will soon learn how to do this;

but for now, you have to understand only that the following

True and False evaluations are correct:

♦ A True relational result evaluates to 1.

♦ A False relational result evaluates to 0.

Chapter 9 ♦ Relational Operators

188

Each of the statements presented earlier in this example

evaluates to a 1, or True, result.

2. If you assume the same values as stated for the previous

example’s four variables, each of the value’s statements is

False (0):

a == b

b > c

d < a

d > a

a != d

b >= c

c <= b

Study these statements to see why each is False and evalu-

ates to 0. The variables a and d, for example, are exactly

equal to the same value (5), so neither is greater or less than

the other.

You use relational logic in everyday life. Think of the follow-

ing statements:

“The generic butter costs less than the name brand.”

“My child is younger than Johnny.”

“Our salaries are equal.”

“The dogs are not the same age.”

Each of these statements can be either True or False. There is

no other possible answer.

Watch the Signs!

Many people say they are “not math-inclined” or “not logical,”

and you might be one of them. But, as mentioned in Chapter 8,

you do not have to be good in math to be a good computer

programmer. Neither should you be frightened by the term

189

EXAMPLE
C++ By

“relational logic,” because you just saw how you use it in every-

day life. Nevertheless, symbols confuse some people.

The two primary relational operators, less than (<) and greater
than (>), are easy to remember. You probably learned this

concept in school, but might have forgotten it. Actually, their

signs tell you what they mean.

The arrow points to the lesser of the two values. Notice how, in

the previous Example 1, the arrow (the point of the < or >)

always points to the lesser number. The larger, open part of the

arrow points to the larger number.

The relation is False if the arrow is pointing the wrong way. In

other words, 4 > 9 is False because the operator symbol is

pointing to the 9, which is not the lesser number. In English this

statement says, “4 is greater than 9,” which is clearly false.

The if Statement
You incorporate relational operators in C++ programs with the

if statement. Such an expression is called a decision statement because

it tests a relationship—using the relational operators—and, based

on the test’s result, makes a decision about which statement to

execute next.

The if statement appears as follows:

if (condition)

 { block of one or more C++ statements }

The condition includes any relational comparison, and it must

be enclosed in parentheses. You saw several relational comparisons

earlier, such as a==d, c<d, and so on. The block of one or more C++

statements is any C++ statement, such as an assignment or printf(),

enclosed in braces. The block of the if, sometimes called the body of

the if statement, is usually indented a few spaces for readability.

This enables you to see, at a glance, exactly what executes if condition

is True.

Chapter 9 ♦ Relational Operators

190

If only one statement follows the if, the braces are not required

(but it is always good to include them). The block executes only if

condition is True. If condition is False, C++ ignores the block and

simply executes the next appropriate statement in the program that

follows the if statement.

Basically, you can read an if statement in the following way: “If

the condition is True, perform the block of statements inside the

braces. Otherwise, the condition must be False; so do not execute

that block, but continue executing the remainder of the program as

though this if statement did not exist.”

The if statement is used to make a decision. The block of

statements following the if executes if the decision (the result of the

relation) is True, but the block does not execute otherwise. As with

relational logic, you also use if logic in everyday life. Consider the

statements that follow.

“If the day is warm, I will go swimming.”

“If I make enough money, we will build a new house.”

“If the light is green, go.”

“If the light is red, stop.”

Each of these statements is conditional. That is, if and only if the

condition is true do you perform the activity.

CAUTION: Do not type a semicolon after the parentheses of

the relational test. Semicolons appear after each statement

inside the block.

Expressions as the Condition

C++ interprets any nonzero value as True, and zero always as

False. This enables you to insert regular nonconditional expres-

sions in the if logic. To understand this concept, consider the

following section of code:

The if statement
makes a decision.

191

EXAMPLE
C++ By

main()

{

 int age=21; // Declares and assigns age as 21.

 if (age=85)

 { cout << “You have lived through a lot!”; }

 // Remaining program code goes here.

At first, it might seem as though the printf() does not execute,

but it does! Because the code line used a regular assignment

operator (=) (not a relational operator, ==), C++ performs the

assignment of 85 to age. This, as with all assignments you saw

in Chapter 8, “Using C++ Math Operators and Precedence,”

produces a value for the expression of 85. Because 85 is nonzero,

C++ interprets the if condition as True and then performs the

body of the if statement.

Confusing the relational equality test (==) with the regular

assignment operator (=) is a common error in C++ programs,

and the nonzero True test makes this bug even more difficult to

find.

The designers of C++ didn’t intend for this to confuse you.

They want you to take advantage of this feature whenever you

can. Instead of putting an assignment before an if and testing

the result of that assignment, you can combine the assignment

and if into a single statement.

Test your understanding of this by considering this: Would

C++ interpret the following condition as True or False?

if (10 == 10 == 10)...

Be careful! At first glance, it seems True; but C++ interprets it

as False! Because the == operator associates from the left, the

program compares the first 10 to the second. Because they are

equal, the result is 1 (for True) and the 1 is then compared to the

third 10—which results in a 0 (for False)!

Chapter 9 ♦ Relational Operators

192

Examples

1. The following are examples of valid C++ if statements.

If (the variable sales is greater than 5000), then the variable bonus
becomes equal to 500.

if (sales > 5000)

 { bonus = 500; }

If this is part of a C++ program, the value inside the variable

sales determines what happens next. If sales contains more

than 5000, the next statement that executes is the one inside

the block that initializes bonus. If, however, sales contains

5000 or less, the block does not execute, and the line follow-

ing the if’s block executes.

If (the variable age is less than or equal to 21) then print You are a
minor. to the screen and go to a new line, print What is your
grade? to the screen, and accept an integer from the keyboard.

if (age <= 21)

 { cout << “You are a minor.\n”;

 cout << “What is your grade? “;

 cin >> grade; }

If the value in age is less than or equal to 21, the lines of code

within the block execute next. Otherwise, C++ skips the

entire block and continues with the remaining program.

If (the variable balance is greater than the variable low_balance),
then print Past due! to the screen and move the cursor to a new
line.

if (balance > low_balance)

 {cout << “Past due!\n”; }

If the value in balance is more than that in low_balance, execu-

tion of the program continues at the block and the message

“Past due!” prints on-screen. You can compare two variables

to each other (as in this example), or a variable to a literal (as

in the previous examples), or a literal to a literal (although

this is rarely done), or a literal to any expression in place of

any variable or literal. The following if statement shows an

expression included in the if.

193

EXAMPLE
C++ By

If (the variable pay multiplied by the variable tax_rate equals the
variable minimum), then the variable low_salary is assigned 1400.60.

If (pay * tax_rate == minimum)

 { low_salary = 1400.60; }

The precedence table of operators in Appendix D, “C++

Precedence Table,” includes the relational operators. They

are at levels 11 and 12, lower than the other primary math

operators. When you use expressions such as the one shown

in this example, you can make these expressions much more

readable by enclosing them in parentheses (even though

C++ does not require it). Here is a rewrite of the previous if

statement with ample parentheses:

If (the variable pay (multiplied by the variable tax_rate) equals the
variable minimum), then the variable low_salary is assigned 1400.60.

If ((pay * tax_rate) == minimum)

 { low_salary = 1400.60; }

2. The following is a simple program that computes a

salesperson’s pay. The salesperson receives a flat rate of

$4.10 per hour. In addition, if sales are more than $8,500, the

salesperson also receives an additional $500 as a bonus. This

is an introductory example of conditional logic, which

depends on a relation between two values, sales and $8500.

// Filename: C9PAY1.CPP

// Calculates a salesperson’s pay based on his or her sales.

#include <iostream.h>

#include <stdio.h>

main()

{

 char sal_name[20];

 int hours;

 float total_sales, bonus, pay;

 cout << “\n\n”; // Print two blank lines.

 cout << “Payroll Calculation\n”;

 cout << “-------------------\n”;

Chapter 9 ♦ Relational Operators

194

 // Ask the user for needed values.

 cout << “What is salesperson’s last name? “;

 cin >> sal_name;

 cout << “How many hours did the salesperson work? “;

 cin >> hours;

 cout << “What were the total sales? “;

 cin >> total_sales;

 bonus = 0; // Initially, there is no bonus.

 // Compute the base pay.

 pay = 4.10 * (float)hours; // Type casts the hours.

 // Add bonus only if sales were high.

 if (total_sales > 8500.00)

 { bonus = 500.00; }

 printf(“%s made $%.2f \n”, sal_name, pay);

 printf(“and got a bonus of $%.2f”, bonus);

 return 0;

}

This program uses cout, cin, and printf() for its input and

output. You can mix them. Include the appropriate header

files if you do (stdio.h and iostream.h).

The following output shows the result of running this

program twice, each time with different input values. Notice

that the program does two different things: It computes a

bonus for one employee, but doesn’t for the other. The $500

bonus is a direct result of the if statement. The assignment

of $500 to bonus executes only if the value in total_sales is

more than $8500.

Payroll Calculation

What is salesperson’s last name? Harrison

How many hours did the salesperson work? 40

What were the total sales? 6050.64

Harrison made $164.00

and got a bonus of $0.00

195

EXAMPLE
C++ By

Payroll Calculation

What is salesperson’s last name? Robertson

How many hours did the salesperson work? 40

What were the total sales? 9800

Robertson made $164.00

and got a bonus of $500.00

3. When programming the way users input data, it is wise to

program data validation on the values they type. If they enter

a bad value (for instance, a negative number when the input

cannot be negative), you can inform them of the problem

and ask them to reenter the data.

Not all data can be validated, of course, but most of it can be

checked for reasonableness. For example, if you write a

student record-keeping program, to track each student’s

name, address, age, and other pertinent data, you can check

whether the age falls in a reasonable range. If the user enters

213 for the age, you know the value is incorrect. If the user

enters -4 for the age, you know this value is also incorrect.

Not all erroneous input for age can be checked, however. If

the user is 21, for instance, and types 22, your program has

no way of knowing whether this is correct, because 22 falls

in a reasonable age range for students.

The following program is a routine that requests an age, and

makes sure it is more than 10. This is certainly not a fool-

proof test (because the user can still enter incorrect ages), but

it takes care of extremely low values. If the user enters a bad

age, the program asks for it again inside the if statement.

// Filename: C9AGE.CPP

// Program that ensures age values are reasonable.

#include <stdio.h>

main()

{

 int age;

 printf(“\nWhat is the student’s age? “);

 scanf(“ %d”, &age); // With scanf(), remember the &

Chapter 9 ♦ Relational Operators

196

 if (age < 10)

 { printf(“%c”, ‘\x07’); // BEEP

 printf(“*** The age cannot be less than 10 ***\n”);

 printf(“Try again...\n\n”);

 printf(“What is the student’s age? “);

 scanf(“ %d”, &age);

 }

 printf(“Thank you. You entered a valid age.”);

 return 0;

}

This routine can also be a section of a longer program. You

learn later how to prompt repeatedly for a value until a valid

input is given. This program takes advantage of the bell

(ASCII 7) to warn the user that a bad age was entered.

Because the \a character is an escape sequence for the alarm

(see Chapter 4, “Variables and Literals” for more informa-

tion on escape sequences), \a can replace the \x07 in this

program.

If the entered age is less than 10, the user receives an error

message. The program beeps and warns the user about the

bad age before asking for it again.

The following shows the result of running this program.

Notice that the program “knows,” due to the if statement,

whether age is more than 10.

What is the student’s age? 3

*** The age cannot be less than 10 ***

Try again...

What is the student’s age? 21

Thank you. You entered a valid age.

4. Unlike many languages, C++ does not include a square math

operator. Remember that you “square” a number by multi-

plying it times itself (3*3, for example). Because many com-

puters do not allow for integers to hold more than the square

of 180, the following program uses if statements to make

sure the number fits as an integer.

197

EXAMPLE
C++ By

The program takes a value from the user and prints its

square—unless it is more than 180. The message * Square is

not allowed for numbers over 180 * appears on-screen if the

user types a huge number.

// Filename: C9SQR1.CPP

// Print the square of the input value

// if the input value is less than 180.

#include <iostream.h>

main()

{

 int num, square;

 cout << “\n\n”; // Print two blank lines.

 cout << “What number do you want to see the square of? “;

 cin >> num;

 if (num <= 180)

 { square = num * num;

 cout << “The square of “ << num << “ is “ <<

 square << “\n”;

 }

 if (num > 180)

 { cout << ‘\x07’; // BEEP

 cout << “\n* Square is not allowed for numbers over 180 *”;

 cout << “\nRun this program again trying a smaller value.”;

 }

 cout << “\nThank you for requesting square roots.\n”;

 return 0;

}

The following output shows a couple of sample runs with

this program. Notice that both conditions work: If the user

enters a number less than 180, the calculated square appears,

but if the user enters a larger number, an error message

appears.

Chapter 9 ♦ Relational Operators

198

What number do you want to see the square of? 45

The square of 45 is 2025

Thank you for requesting square roots.

What number do you want to see the square of? 212

* Square is not allowed for numbers over 180 *

Run this program again trying a smaller value.

Thank you for requesting square roots.

You can improve this program with the else statement,

which you learn later in this chapter. This code includes a

redundant check of the user’s input. The variable num must

be checked once to print the square if the input number is

less than or equal to 180, and checked again for the error

message if it is greater than 180.

5. The value of 1 and 0 for True and False, respectively, can

help save you an extra programming step, which you are not

necessarily able to save in other languages. To understand

this, examine the following section of code:

commission = 0; // Initialize commission

if (sales > 10000)

 { commission = 500.00; }

pay = net_pay + commission; // Commission is 0 unless

 // high sales.

You can make this program more efficient by combining the

if’s relational test because you know that if returns 1 or 0:

pay = net_pay + (commission = (sales > 10000) * 500.00);

This single line does what it took the previous four lines to

do. Because the assignment on the extreme right has prece-

dence, it is computed first. The program compares the

variable sales to 10000. If it is more than 10000, a True result

of 1 returns. The program then multiplies 1 by 500.00 and

stores the result in commission. If, however, the sales were not

199

EXAMPLE
C++ By

more than 10000, a 0 results and the program receives 0 from

multiplying 0 by 500.00.

Whichever value (500.00 or 0) the program assigns to commis-

sion is then added to net_pay and stored in pay.

The else Statement
The else statement never appears in a program without an if

statement. This section introduces the else statement by showing

you the popular if-else combination statement. Its format is

if (condition)

 { A block of 1 or more C++ statements }

else

 { A block of 1 or more C++ statements }

The first part of the if-else is identical to the if statement. If

condition is True, the block of C++ statements following the if

executes. However, if condition is False, the block of C++ statements

following the else executes instead. Whereas the simple if statement

determines what happens only when the condition is True, the if-

else also determines what happens if the condition is False. No

matter what the outcome is, the statement following the if-else

executes next.

The following describes the nature of the if-else:

♦ If the condition test is True, the entire block of statements

following the if executes.

♦ If the condition test is False, the entire block of statements

following the else executes.

NOTE: You can also compare characters, in addition to num-

bers. When you compare characters, C++ uses the ASCII table

to determine which character is “less than” the other (lower in

the ASCII table). But you cannot compare character strings or

arrays of character strings directly with relational operators.

Chapter 9 ♦ Relational Operators

200

Examples

1. The following program asks the user for a number. It then

prints whether or not the number is greater than zero, using

the if-else statement.

// Filename: C9IFEL1.CPP

// Demonstrates if-else by printing whether an

// input value is greater than zero or not.

#include <iostream.h>

main()

{

 int num;

 cout << “What is your number? “;

 cin >> num; // Get the user’s number.

 if (num > 0)

 { cout << “More than 0\n”; }

 else

 { cout << “Less or equal to 0\n”; }

 // No matter what the number was, the following executes.

 cout << “\n\nThanks for your time!\n”;

 return 0;

}

There is no need to test for both possibilities when you use

an else. The if tests whether the number is greater than zero,

and the else automatically handles all other possibilities.

2. The following program asks the user for his or her first

name, then stores it in a character array. The program checks

the first character of the array to see whether it falls in the

first half of the alphabet. If it does, an appropriate message is

displayed.

// Filename: C9IFEL2.CPP

// Tests the user’s first initial and prints a message.

#include <iostream.h>

main()

{

201

EXAMPLE
C++ By

 char last[20]; // Holds the last name.

 cout << “What is your last name? “;

 cin >> last;

 // Test the initial

 if (last[0] <= ‘P’)

 { cout << “Your name is early in the alphabet.\n”;}

 else

 { cout << “You have to wait a while for “

 << “YOUR name to be called!\n”;}

 return 0;

}

Notice that because the program is comparing a character

array element to a character literal, you must enclose the

character literal inside single quotation marks. The data type

on each side of each relational operator must match.

3. The following program is a more complete payroll routine

than the other one. It uses the if statement to illustrate how

to compute overtime pay. The logic goes something like this:

If employees work 40 hours or fewer, they are paid regular

pay (their hourly rate times the number of hours worked). If

employees work between 40 and 50 hours, they receive one-

and-a-half times their hourly rate for those hours over 40, in

addition to their regular pay for the first 40. All hours over

50 are paid at double the regular rate.

// Filename: C9PAY2.CPP

// Compute the full overtime pay possibilities.

#include <iostream.h>

#include <stdio.h>

main()

{

 int hours;

 float dt, ht, rp, rate, pay;

 cout << “\n\nHow many hours were worked? “;

 cin >> hours;

 cout << “\nWhat is the regular hourly pay? “;

 cin >> rate;

Chapter 9 ♦ Relational Operators

202

 // Compute pay here

 // Double-time possibility

 if (hours > 50)

 { dt = 2.0 * rate * (float)(hours - 50);

 ht = 1.5 * rate * 10.0;} // Time + 1/2 for 10 hours.

 else

 { dt = 0.0; }// Either none or double for hours over 50.

 // Time and a half.

 if (hours > 40)

 { ht = 1.5 * rate * (float)(hours - 40); }

 // Regular Pay

 if (hours >= 40)

 { rp = 40 * rate; }

 else

 { rp = (float)hours * rate; }

 pay = dt + ht + rp; // Add three components of payroll.

 printf(“\nThe pay is %.2f”, pay);

 return 0;

}

4. The block of statements following the if can contain any

valid C++ statement—even another if statement! This

sometimes is handy, as the following example shows.

You can even use this program to award employees for their

years of service to your company. In this example, you are

giving a gold watch to those with more than 20 years of

service, a paperweight to those with more than 10 years, and

a pat on the back to everyone else!

// Filename: C9SERV.CPP

// Prints a message depending on years of service.

#include <iostream.h>

main()

{

 int yrs;

 cout << “How many years of service? “;

 cin >> yrs; // Determine the years they have worked.

203

EXAMPLE
C++ By

 if (yrs > 20)

 { cout << “Give a gold watch\n”; }

 else

 { if (yrs > 10)

 { cout << “Give a paper weight\n”; }

 else

 { cout << “Give a pat on the back\n”; }

 }

 return 0;

}

Don’t rely on the if within an if to handle too many condi-

tions, because more than three or four conditions can add

confusion. You might mess up your logic, such as: “If this is

True, and if this is also True, then do something; but if not

that, but something else is True, then...” (and so on). The

switch statement that you learn about in a later chapter

handles these types of multiple if selections much better

than a long if within an if statement does.

Review Questions
The answers to the review questions are in Appendix B.

1. Which operator tests for equality?

2. State whether each of these relational tests is True or False:

a. 4 >= 5

b. 4 == 4

c. 165 >= 165

d. 0 != 25

3. True or false: C++ is fun prints on-screen when the following

statement executes.

Chapter 9 ♦ Relational Operators

204

if (54 <= 54)

 { printf(“C++ is fun”); }

4. What is the difference between an if and an if-else state-

ment?

5. Does the following printf() execute?

if (3 != 4 != 1)

 { printf(“This will print”); }

6. Using the ASCII table (see Appendix C, “ASCII Table”), state

whether these character relational tests are True or False:

a. ‘C’ < ‘c’

b. ‘0’ > ‘0’

c. ‘?’ > ‘)’

Review Exercises
1. Write a weather-calculator program that asks for a list of the

previous five days’ temperatures, then prints Brrrr! every

time a temperature falls below freezing.

2. Write a program that asks for a number and then prints the

square and cube (the number multiplied by itself three

times) of the number you input, if that number is more than

1. Otherwise, the program does not print anything.

3. In a program, ask the user for two numbers. Print a message

telling how the first one relates to the second. In other

words, if the user enters 5 and 7, your program prints “5 is

less than 7.”

4. Write a program that prompts the user for an employee’s

pre-tax salary and prints the appropriate taxes. The taxes are

10 percent if the employee makes less than $10,000; 15

percent if the employee earns $10,000 up to, but not includ-

ing, $20,000; and 20 percent if the employee earns $20,000 or

more.

205

EXAMPLE
C++ By

Summary
You now have the tools to write powerful data-checking pro-

grams. This chapter showed you how to compare literals, variables,

and combinations of both by using the relational operators. The if

and the if-else statements rely on such data comparisons to deter-

mine which code to execute next. You can now conditionally execute
statements in your programs.

The next chapter takes this one step further by combining

relational operators to create logical operators (sometimes called

compound conditions). These logical operators further improve your

program’s capability to make selections based on data comparisons.

Chapter 9 ♦ Relational Operators

206

