
207

EXAMPLE
C++ By

10

Logical Operators

C++’s logical operators enable you to combine relational operators

into more powerful data-testing statements. The logical operators

are sometimes called compound relational operators. As C++’s prece-

dence table shows, relational operators take precedence over logical

operators when you combine them. The precedence table plays an

important role in these types of operators, as this chapter empha-

sizes.

This chapter introduces you to

♦ The logical operators

♦ How logical operators are used

♦ How logical operators take precedence

This chapter concludes your study of the conditional testing

that C++ enables you to perform, and it illustrates many examples

of if statements in programs that work on compound conditional

tests.

Defining Logical Operators
There may be times when you have to test more than one set of

variables. You can combine more than one relational test into a

compound relational test by using C++’s logical operators, as shown in

Table 10.1.

Chapter 10 ♦ Logical Operators

208

Table 10.1. Logical operators.

Operator Meaning

&& AND

|| OR

! NOT

The first two logical operators, && and ||, never appear by

themselves. They typically go between two or more relational tests.

Table 10.2 shows you how each logical operator works. These

tables are called truth tables because they show you how to achieve

True results from an if statement that uses these operators. Take

some time to study these tables.

Table 10.2. Truth tables.

The AND (&&) truth table

(Both sides must be True)

True AND True = True

True AND False = False

False AND True = False

False AND False = False

The OR (||) truth table

(One or the other side must be True)

True OR True = True

True OR False = True

False OR True = True

False OR False = False

The NOT (!) truth table

(Causes an opposite relation)

NOT True = False

NOT False = True

Logical operators
enable the user to
compute compound
relational tests.

209

EXAMPLE
C++ By

Logical Operators and
Their Uses

The True and False on each side of the operators represent a

relational if test. The following statements, for example, are valid if

tests that use logical operators (sometimes called compound relational
operators).

If the variable a is less than the variable b, and the variable c is greater than
the variable d, then print Results are invalid. to the screen.

if ((a < b) && (c > d))

 { cout << “Results are invalid.”; }

The variable a must be less than b and, at the same time, c must

be greater than d for the printf() to execute. The if statement still

requires parentheses around its complete conditional test. Consider

this portion of a program:

if ((sales > 5000) || (hrs_worked > 81))

 { bonus=500; }

The sales must be more than 5000, or the hrs_worked must be

more than 81, before the assignment executes.

if (!(sales < 2500))

 { bonus = 500; }

If sales is greater than or equal to 2500, bonus is initialized. This

illustrates an important programming tip: Use ! sparingly. Or, as

some professionals so wisely put it: “Do not use ! or your programs

will not be !(unclear).” It is much clearer to rewrite the previous

example by turning it into a positive relational test:

if (sales >= 2500)

 { bonus 500; }

But the ! operator is sometimes helpful, especially when testing

for end-of-file conditions for disk files, as you learn in Chapter 30,

“Sequential Files.” Most the time, however, you can avoid using ! by

using the reverse logic shown in the following:

The || is
sometimes called
inclusive OR. Here is
a program segment
that includes the not
(!) operator:

Chapter 10 ♦ Logical Operators

210

!(var1 == var2) is the same as (var1 != var2)

!(var1 <= var2) is the same as (var1 > var2)

!(var1 >= var2) is the same as (var1 < var2)

!(var1 != var2) is the same as (var1 == var2)

!(var1 > var2) is the same as (var1 <= var2)

!(var1 < var2) is the same as (var1 >= var2)

Notice that the overall format of the if statement is retained

when you use logical operators, but the relational test expands to

include more than one relation. You even can have three or more, as

in the following statement:

if ((a == B) && (d == f) || (l = m) || !(k <> 2)) ...

This is a little too much, however, and good programming

practice dictates using at most two relational tests inside a single if

statement. If you have to combine more than two, use more than one

if statement to do so.

As with other relational operators, you also use the following

logical operators in everyday conversation.

“If my pay is high and my vacation time is long, we can go

to Italy this summer.”

“If you take the trash out or clean your room, you can watch

TV tonight.”

“If you aren’t good, you’ll be punished.”

Internal Truths

The True or False results of relational tests occur internally at

the bit level. For example, take the if test:

if (a == 6) ...

to determine the truth of the relation, (a==6). The computer

takes a binary 6, or 00000110, and compares it, bit-by-bit, to

the variable a. If a contains 7, a binary 00000111, the result of

this equal test is False, because the right bit (called the least-
significant bit) is different.

211

EXAMPLE
C++ By

C++’s Logical Efficiency

C++ attempts to be more efficient than other languages. If you

combine multiple relational tests with one of the logical operators,

C++ does not always interpret the full expression. This ultimately

makes your programs run faster, but there are dangers! For ex-

ample, if your program is given the conditional test:

if ((5 > 4) || (sales < 15) && (15 != 15))...

C++ only evaluates the first condition, (5 > 4), and realizes it does

not have to look further. Because (5 > 4) is True and because || (OR)

anything that follows it is still True, C++ does not bother with the

rest of the expression. The same holds true for the following state-

ment:

if ((7 < 3) && (age > 15) && (initial == ‘D’))...

Here, C++ evaluates only the first condition, which is False.

Because the && (AND) anything else that follows it is also False, C++

does not interpret the expression to the right of (7 < 3). Most of the

time, this doesn’t pose a problem, but be aware that the following

expression might not fulfill your expectations:

if ((5 > 4) || (num = 0))...

The (num = 0) assignment never executes, because C++ has to

interpret only (5 > 4) to determine whether the entire expression is

True or False. Due to this danger, do not include assignment

expressions in the same condition as a logical test. The following

single if condition:

if ((sales > old_sales) || (inventory_flag = ‘Y’))...

should be broken into two statements, such as:

inventory_flag) = ‘Y’;

if ((sales > old_sales) || (inventory_flag))...

so the inventory_flag is always assigned the ‘Y’ value, no matter how

the (sales > old_sales) expression tests.

Chapter 10 ♦ Logical Operators

212

Examples

1. The summer Olympics are held every four years during each

year that is divisible evenly by 4. The U.S. Census is taken

every 10 years, in each year that is evenly divisible by 10.

The following short program asks for a year, and then tells

the user if it is a year of the summer Olympics, a year of the

census, or both. It uses relational operators, logical opera-

tors, and the modulus operator to determine this output.

// Filename: C10YEAR.CPP

// Determines if it is Summer Olympics year,

// U.S. Census year, or both.

#include <iostream.h>

main()

{

 int year;

 // Ask for a year

 cout << “What is a year for the test? “;

 cin >> year;

 // Test the year

 if (((year % 4)==0) && ((year % 10)==0))

 { cout << “Both Olympics and U.S. Census!”;

 return 0; } // Quit program, return to operating

 // system.

 if ((year % 4)==0)

 { cout << “Summer Olympics only”; }

 else

 { if ((year % 10)==0)

 { cout << “U.S. Census only”; }

 }

 return 0;

}

2. Now that you know about compound relations, you can

write an age-checking program like the one called

C9AGE.CPP presented in Chapter 9, “Relational Operators.”

That program ensured the age would be above 10. This is

another way you can validate input for reasonableness.

213

EXAMPLE
C++ By

The following program includes a logical operator in its if to

determine whether the age is greater than 10 and less than

100. If either of these is the case, the program concludes that

the user did not enter a valid age.

// Filename: C10AGE.CPP

// Program that helps ensure age values are reasonable.

#include <iostream.h>

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 if ((age < 10) || (age > 100))

 { cout << “ \x07 \x07 \n”; // Beep twice

 cout << “*** The age must be between 10 and”

 “100 ***\n”; }

 else

 { cout << “You entered a valid age.”; }

 return 0;

}

3. The following program could be used by a video store to

calculate a discount, based on the number of rentals people

transact as well as their customer status. Customers are

classified either R for Regular or S for Special. Special custom-

ers have been members of the rental club for more than one

year. They automatically receive a 50-cent discount on all

rentals. The store also holds “value days” several times a

year. On value days, all customers receive the 50-cent dis-

count. Special customers do not receive an additional 50

cents off during value days, because every day is a discount

for them.

The program asks for each customer’s status and whether or

not it is a value day. It then uses the || relation to test for the

discount. Even before you started learning C++, you would

probably have looked at this problem with the following

idea in mind.

Chapter 10 ♦ Logical Operators

214

“If a customer is Special or if it is a value day, deduct 50

cents from the rental.”

That’s basically the idea of the if decision in the following

program. Even though Special customers do not receive an

additional discount on value days, there is one final if test

for them that prints an extra message at the bottom of the

screen’s indicated billing.

// Filename: C10VIDEO.CPP

// Program that computes video rental amounts and gives

// appropriate discounts based on the day or customer status.

#include <iostream.h>

#include <stdio.h>

main()

{

 float tape_charge, discount, rental_amt;

 char first_name[15];

 char last_name[15];

 int num_tapes;

 char val_day, sp_stat;

 cout << “\n\n *** Video Rental Computation ***\n”;

 cout << “ ------------------------\n”;

 // Underline title

 tape_charge = 2.00;

 // Before-discount tape fee-per tape.

 // Receive input data.

 cout << “\nWhat is customer’s first name? “;

 cin >> first_name;

 cout << “What is customer’s last name? “;

 cin >> last_name;

 cout << “\nHow many tapes are being rented? “;

 cin >> num_tapes;

 cout << “Is this a Value day (Y/N)? “;

 cin >> val_day;

 cout << “Is this a Special Status customer (Y/N)? “;

 cin >> sp_stat;

 // Calculate rental amount.

215

EXAMPLE
C++ By

 discount = 0.0; // Increase discount if they are eligible.

 if ((val_day == ‘Y’) || (sp_stat == ‘Y’))

 { discount = 0.5;

 rental_amt=(num_tapes*tape_charge)

 (discount*num_tapes); }

 // Print the bill.

 cout << “\n\n** Rental Club **\n\n”;

 cout << first_name << “ “ << last_name << “ rented “

 << num_tapes << “ tapes\n”;

 printf(“The total was %.2f\n”, rental_amt);

 printf(“The discount was %.2f per tape\n”, discount);

 // Print extra message for Special Status customers.

 if (sp_stat == ‘Y’)

 { cout << “\nThank them for being a Special “

 << “Status customer\n”;}

 return 0;

}

The output of this program appears below. Notice that

Special customers have the extra message at the bottom of

the screen. This program, due to its if statements, performs

differently depending on the data entered. No discount is

applied for Regular customers on nonvalue days.

*** Video Rental Computation ***

What is customer’s first name? Jerry

What is customer’s last name? Parker

How many tapes are being rented? 3

Is this a Value day (Y/N)? Y

Is this a Special Status customer (Y/N)? Y

** Rental Club **

Jerry Parker rented 3 tapes

The total was 4.50

The discount was 0.50 per tape

Thank them for being a Special Status customer

Chapter 10 ♦ Logical Operators

216

Logical Operators and
Their Precedence

The math precedence order you read about in Chapter 8,

“Using C++ Math Operators and Precedence,” did not include the

logical operators. To be complete, you should be familiar with the

entire order of precedence, as presented in Appendix D, “C++

Precedence Table.”

You might wonder why the relational and logical operators are

included in a precedence table. The following statement helps show

you why:

if ((sales < min_sal * 2 && yrs_emp > 10 * sub) ...

Without the complete order of operators, it is impossible to

determine how such a statement would execute. According to the

precedence order, this if statement executes as follows:

if ((sales < (min_sal * 2)) && (yrs_emp > (10 * sub))) ...

This still might be confusing, but it is less so. The two multipli-

cations are performed first, followed by the relations < and >. The &&

is performed last because it is lowest in the precedence order of

operators.

To avoid such ambiguous problems, be sure to use ample

parentheses—even if the default precedence order is your intention.

It is also wise to resist combining too many expressions inside a

single if relational test.

Notice that || (OR) has lower precedence than && (AND).

Therefore, the following if tests are equivalent:

if ((first_initial==’A’) && (last_initial==’G’) || (id==321)) ...

if (((first_initial==’A’) && (last_initial==’G’)) || (id==321)) ...

The second is clearer, due to the parentheses, but the precedence

table makes them identical.

217

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. What are the three logical operators?

2. The following compound relational tests produce True or

False comparisons. Determine which are True and which are

False.

a. ! (True || False)

b. (True && False) && (False || True)

c. ! (True && False)

d. True || (False && False) || False

3. Given the statement:

int i=12, j=10, k=5;

What are the results (True or False) of the following state-

ments? (Hint: Remember that C++ interprets any nonzero

statement as True.)

a. i && j

b. 12 - i || k

c. j != k && i != k

4. What is the value printed in the following program? (Hint:
Don’t be misled by the assignment operators on each side of

the ||.)

// Filename: C10LOGO.CPP

// Logical operator test

#include <iostream.h>

main()

{

 int f, g;

 g = 5;

 f = 8;

 if ((g = 25) || (f = 35))

Chapter 10 ♦ Logical Operators

218

 { cout << “g is “ << g << “ and f got changed to “ << f; }

 return 0;

}

5. Using the precedence table, determine whether the follow-

ing statements produce a True or False result. After this, you

should appreciate the abundant use of parentheses!

a. 5 == 4 + 1 || 7 * 2 != 12 - 1 && 5 == 8 / 2

b. 8 + 9 != 6 - 1 || 10 % 2 != 5 + 0

c. 17 - 1 > 15 + 1 && 0 + 2 != 1 == 1 || 4 != 1

d. 409 * 0 != 1 * 409 + 0 || 1 + 8 * 2 >= 17

6. Does the following cout execute?

if (!0)

 { cout << “C++ By Example \n”; }

Review Exercises
1. Write a program (by using a single compound if state-

ment) to determine whether the user enters an odd positive

number.

2. Write a program that asks the user for two initials. Print a

message telling the user if the first initial falls alphabetically

before the second.

3. Write a number-guessing game. Assign a value to a variable

called number at the top of the program. Give a prompt that

asks for five guesses. Receive the user’s five guesses with a

single scanf() for practice with scanf(). Determine whether

any of the guesses match the number and print an appropriate

message if one does.

4. Write a tax-calculation routine, as follows: A family pays no

tax if its income is less than $5,000. It pays a 10 percent tax if

its income is $5,000 to $9,999, inclusive. It pays a 20 percent

tax if the income is $10,000 to $19,999, inclusive. Otherwise,

it pays a 30 percent tax.

219

EXAMPLE
C++ By

Summary
This chapter extended the if statement to include the &&, ||, and

! logical operators. These operators enable you to combine several

relational tests into a single test. C++ does not always have to

look at every relational operator when you combine them in an ex-

pression.

This chapter concludes the explanation of the if statement. The

next chapter explains the remaining regular C++ operators. As you

saw in this chapter, the precedence table is still important to the C++

language. Whenever you are evaluating expressions, keep the pre-

cedence table in the back of your mind (or at your fingertips) at all

times!

Chapter 10 ♦ Logical Operators

220

