
221

EXAMPLE
C++ By

11

Additional C++
Operators

C++ has several other operators you should learn besides those you

learned in Chapters 9 and 10. In fact, C++ has more operators than

most programming languages. Unless you become familiar with

them, you might think C++ programs are cryptic and difficult to

follow. C++’s heavy reliance on its operators and operator prece-

dence produces the efficiency that enables your programs to run

more smoothly and quickly.

This chapter teaches you the following:

♦ The ?: conditional operator

♦ The ++ increment operator

♦ The –– decrement operator

♦ The sizeof operator

♦ The (,) comma operator

♦ The Bitwise Operators (&, |, and ^)

Chapter 11 ♦ Additional C++ Operators

222

Most the operators described in this chapter are unlike those

found in any other programming language. Even if you have

programmed in other languages for many years, you still will be

surprised by the power of these C++ operators.

The Conditional Operator
The conditional operator is C++’s only ternary operator, requir-

ing three operands (as opposed to the unary’s single-and the binary’s

double-operand requirements). The conditional operator is used to

replace if-else logic in some situations. The conditional operator is

a two-part symbol, ?:, with a format as follows:

conditional_expression ? expression1 : expression2;

The conditional_expression is any expression in C++ that results

in a True (nonzero) or False (zero) answer. If the result of

conditional_expression is True, expression1 executes. Otherwise, if

the result of conditional_expression is False, expression2 executes.

Only one of the expressions following the question mark ever

executes. Only a single semicolon appears at the end of expression2.
The internal expressions, such as expression1, do not have a semico-

lon. Figure 11.1 illustrates the conditional operator more clearly.

The conditional
operator is a ternary
operator.

Figure 11.1. Format of the conditional operator.

223

EXAMPLE
C++ By

If you require simple if-else logic, the conditional operator

usually provides a more direct and succinct method, although you

should always prefer readability over compact code.

To glimpse the conditional operator at work, consider the

section of code that follows.

if (a > b)

 { ans = 10; }

else

 { ans = 25; }

You can easily rewrite this kind of if-else code by using a single

conditional operator.

If the variable a is greater than the variable b, make the variable ans
equal to 10; otherwise, make ans equal to 25.

a > b ? (ans = 10) : (ans = 25);

A l t h o u g h p a r e n t h e s e s a r e n o t r e q u i r e d a r o u n d

conditional_expression to make it work, they usually improve read-

ability. This statement’s readability is improved by using parenthe-

ses, as follows:

(a > b) ? (ans = 10) : (ans = 25);

Because each C++ expression has a value—in this case, the

value being assigned—this statement could be even more succinct,

without loss of readability, by assigning ans the answer to the left of

the conditional:

ans = (a > b) ? (10) : (25);

This expression says: If a is greater than b, assign 10 to ans;

otherwise, assign 25 to ans. Almost any if-else statement can be

rewritten as a conditional, and vice versa. You should practice

converting one to the other to familiarize yourself with the condi-

tional operator’s purpose.

NOTE: A n y v a l i d if C + + s t a t e m e n t a l s o c a n b e a

conditional_expression, including all relational and logical op-

erators as well as any of their possible combinations.

Chapter 11 ♦ Additional C++ Operators

224

Examples

1. Suppose you are looking over your early C++ programs, and

you notice the following section of code.

if (production > target)

 { target *= 1.10; }

else

 { target *= .90; }

You should realize that such a simple if-else statement can

be rewritten using a conditional operator, and that more

efficient code results. You can therefore change it to the

following single statement.

(production > target) ? (target *= 1.10) : (target *= .90);

2. Using a conditional operator, you can write a routine to find

the minimum value between two variables. This is some-

times called a minimum routine. The statement to do this is

minimum = (var1 < var2) ? var1 : var2;

If var1 is less than var2, the value of var1 is assigned to mini-

mum. If var2 is less, the value of var2 is assigned to minimum. If

the variables are equal, the value of var2 is assigned to

minimum, because it does not matter which is assigned.

3. A maximum routine can be written just as easily:

maximum = (var1 > var2) ? var1 : var2;

4. Taking the previous examples a step further, you can also

test for the sign of a variable. The following conditional

expression assigns –1 to the variable called sign if testvar is

less than 0; 0 to sign if testvar is zero; and +1 to sign if testvar

is 1 or more.

sign = (testvar < 0) ? -1 : (testvar > 0);

It might be easy to spot why the less-than test results in a –1,

but the second part of the expression can be confusing. This

works well due to C++’s 1 and 0 (for True and False, respec-

tively) return values from a relational test. If testvar is 0 or

greater, sign is assigned the answer (testvar > 0). The value

225

EXAMPLE
C++ By

of (testvar > 0) is 1 if True (therefore, testvar is more than 0)

or 0 if testvar is equal to 0.

The preceding statement shows C++’s efficient conditional

operator. It might also help you understand if you write the

statement using typical if-else logic. Here is the same

problem written with a typical if-else statement:

if (testvar < 0)

 { sign = -1; }

else

 { sign = (testvar > 0); } // testvar can only be

 // 0 or more here.

The Increment and
Decrement Operators

C++ offers two unique operators that add or subtract 1 to or

from variables. These are the increment and decrement operators: ++

and ––. Table 11.1 shows how these operators relate to other types of

expressions you have seen. Notice that the ++ and –– can appear on

either side of the modified variable. If the ++ or –– appears on the left,

it is known as a prefix operator. If the operator appears on the right,

it is a postfix operator.

Table 11.1. The ++ and –– operators.

Operator Example Description Equivalent Statements

++ i++; postfix i = i + 1; i += 1;

++ ++i; prefix i = i + 1; i += 1;

–– i––; postfix i = i - 1; i -= 1;

–– ––i; prefix i = i - 1; i -= 1;

Any time you have to add 1 or subtract 1 from a variable, you

can use these two operators. As Table 11.1 shows, if you have to

increment or decrement only a single variable, these operators

enable you to do so.

The ++ operator
adds 1 to a variable.
The –– operator
subtracts 1 from a
variable.

Chapter 11 ♦ Additional C++ Operators

226

Increment and Decrement Efficiency

The increment and decrement operators are straightforward,

efficient methods for adding 1 to a variable and subtracting 1

from a variable. You often have to do this during counting or

processing loops, as discussed in Chapter 12, “The while Loop”

and beyond.

These two operators compile directly into their assembly lan-

guage equivalents. Almost all computers include, at their

lowest binary machine-language commands, increment and

decrement instructions. If you use C++’s increment and decre-

ment operators, you ensure that they compile to these low-level

equivalents.

If, however, you code expressions to add or subtract 1 (as you

do in other programming languages), such as the expression

i = i - 1, you do not actually ensure that C++ compiles

this instruction in its efficient machine-language equivalent.

Whether you use prefix or postfix does not matter—if you are

incrementing or decrementing single variables on lines by them-

selves. However, when you combine these two operators with other

operators in a single expression, you must be aware of their differ-

ences. Consider the following program section. Here, all variables

are integers because the increment and decrement operators work

only on integer variables.

Make a equal to 6. Increment a, subtract 1 from it, then assign the result
to b.

a = 6;

b = ++a - 1;

What are the values of a and b after these two statements finish?

The value of a is easy to determine: it is incremented in the second

statement, so it is 7. However, b is either 5 or 6 depending on when

the variable a increments. To determine when a increments, consider

the following rule:

227

EXAMPLE
C++ By

♦ If a variable is incremented or decremented with a prefix
operator, the increment or decrement occurs before the

variable’s value is used in the remainder of the expression.

♦ If a variable is incremented or decremented with a postfix
operator, the increment or decrement occurs after the

variable’s value is used in the remainder of the expression.

In the previous code, a contains a prefix increment. Therefore,

its value is first incremented to 7, then 1 is subtracted from 7, and the

result (6) is assigned to b. If a postfix increment is used, as in

a = 6;

b = a++ - 1;

a is 6, therefore, 5 is assigned to b because a does not increment

to 7 until after its value is used in the expression. The precedence

table in Appendix D, “C++ Precedence Table,” shows that prefix

operators contain much higher precedence than almost every other

operator, especially low-precedence postfix increments and decre-

ments.

TIP: If the order of prefix and postfix confuses you, break

your expressions into two lines of code and type the increment

or decrement before or after the expression that uses it.

By taking advantage of this tip, you can now rewrite the

previous example as follows:

a = 6;

b = a - 1;

a++;

There is now no doubt as to when a is incremented: a incre-

ments after b is assigned to a-1.

Even parentheses cannot override the postfix rule. Consider

the following statement.

x = p + (((amt++)));

Chapter 11 ♦ Additional C++ Operators

228

There are too many unneeded parentheses here, but even the

redundant parentheses are not enough to increment amt before

adding its value to p. Postfix increments and decrements always
occur after their variables are used in the surrounding expression.

CAUTION: Do not attempt to increment or decrement an

expression. You can apply these operators only to variables.

The following expression is invalid:

sales = ++(rate * hours); // Not allowed!!

Examples

1. As you should with all other C++ operators, keep the prece-

dence table in mind when you evaluate expressions that

increment and decrement. Figures 11.2 and 11.3 show you

some examples that illustrate these operators.

2. The precedence table takes on even more meaning when you

see a section of code such as that shown in Figure 11.3.

3. Considering the precedence table—and, more importantly,

what you know about C++’s relational efficiencies—what is

the value of the ans in the following section of code?

int i=1, j=20, k=-1, l=0, m=1, n=0, o=2, p=1;

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

This, at first, seems to be extremely complicated. Neverthe-

less, you can simply glance at it and determine the value of

ans, as well as the ending value of the rest of the variables.

Recall that when C++ performs a relation || (or), it ignores

the right side of the || if the left value is True (any nonzero

value is True). Because any nonzero value is True, C++ does

229

EXAMPLE
C++ By

Figure 11.2. C++ operators incrementing (above) and decrementing
(below) by order of precedence.

int i=1;

int j=2;

int k=3;

ans = i++ * j - ––k;

 |
 i++ * j - 2

 2 - 2

 0

ans = 0, then i increments by 1 to its final value of 2.

int i=1;

int j=2;

int k=3;

ans = ++i * j - k––;

 |
 2 * j - k––

 4 - k––

 1

ans = 1, then k decrements by 1 to its final value of 2.

not evaluate the values on the right. Therefore, C++ per-

forms this expression as shown:

ans = i || j–– && k++ || ++l && ++m || n–– & !o || p––;

 |
 1 (TRUE)

Chapter 11 ♦ Additional C++ Operators

230

int i=0;

int j=-1;

int k=0;

int m=1

ans = i++ && ++j || k || m++;

 |
 i++ && 0 || k || m++

 0 || k || m++

 0 || m++

 1

ans = 1, then i increments by 1 to its final value of 1,

and m increments by 1 to its final value of 2.

Figure 11.3. Another example of C++ operators and their precedence.

NOTE: Because i is True, C++ evaluates the entire expression

as True and ignores all code after the first ||. Therefore, every
other increment and decrement expression is ignored. Because C++

ignores the other expressions, only ans is changed by this

expression. The other variables, j through p, are never

incremented or decremented, even though several of them

contain increment and decrement operators. If you use rela-

tional operators, be aware of this problem and break out all

increment and decrement operators into statements by them-

selves, placing them on lines before the relational statements

that use their values.

The sizeof Operator
There is another operator in C++ that does not look like an

operator at all. It looks like a built-in function, but it is called the

231

EXAMPLE
C++ By

sizeof operator. In fact, if you think of sizeof as a function call, you

might not become confused because it works in a similar way. The

format of sizeof follows:

sizeof data

or

sizeof(data type)

The sizeof operator is unary, because it operates on a single

value. This operator produces a result that represents the size, in

bytes, of the data or data type specified. Because most data types and

variables require different amounts of internal storage on different

computers, the sizeof operator enables programs to maintain con-

sistency on different types of computers.

TIP: Most C++ programmers use parentheses around the

sizeof argument, whether that argument is data or data type .
Because you must use parentheses around data type arguments

and you can use them around data arguments, it doesn’t hurt to

always use them.

The sizeof operator is sometimes called a compile-time operator.
At compile time, rather than runtime, the compiler replaces each

occurrence of sizeof in your program with an unsigned integer

value. Because sizeof is used more in advanced C++ programming,

this operator is better utilized later in the book for performing more

advanced programming requirements.

If you use an array as the sizeof argument, C++ returns the

number of bytes you originally reserved for that array. Data inside

the array have nothing to do with its returned sizeof value—even if

it’s only a character array containing a short string.

Examples

1. Suppose you want to know the size, in bytes, of floating-

point variables for your computer. You can determine

this by entering the keyword float in parentheses—after

sizeof—as shown in the following program.

The sizeof
operator returns its
argument’s size in
bytes.

Chapter 11 ♦ Additional C++ Operators

232

// Filename: C11SIZE1.CPP

// Prints the size of floating-point values.

#include <iostream.h>

main()

{

 cout << “The size of floating-point variables on \n”;

 cout << “this computer is “ << sizeof(float) << “\n”;

 return 0;

}

This program might produce different results on different

computers. You can use any valid data type as the sizeof

argument. On most PCs, this program probably produces

this output:

The size of floating-point variables on

this computer is: 4

The Comma Operator
Another C++ operator, sometimes called a sequence point, works

a little differently. This is the comma operator (,), which does not

directly operate on data, but produces a left-to-right evaluation of

expressions. This operator enables you to put more than one expres-

sion on a single line by separating each one with a comma.

You already saw one use of the sequence point comma when

you learned how to declare and initialize variables. In the following

section of code, the comma separates statements. Because the comma

associates from the left, the first variable, i, is declared and initial-

ized before the second variable.

main()

{

 int i=10, j=25;

 // Remainder of the program follows.

233

EXAMPLE
C++ By

However, the comma is not a sequence point when it is used

inside function parentheses. Then it is said to separate arguments,

but it is not a sequence point. Consider the printf() that follows.

printf(“%d %d %d”, i, i++, ++i);

Many results are possible from such a statement. The commas

serve only to separate arguments of the printf(), and do not generate

the left-to-right sequence that they otherwise do when they aren’t

used in functions. With the statement shown here, you are not

ensured of any order! The postfix i++ might possibly be performed

before the prefix ++i, even though the precedence table does not

require this. Here, the order of evaluation depends on how your

compiler sends these arguments to the printf() function.

TIP: Do not put increment operators or decrement operators

in function calls because you cannot predict the order in which

they execute.

Examples

1. You can put more than one expression on a line, using the

comma as a sequence point. The following program does

this.

// Filename: C11COM1.CPP

// Illustrates the sequence point.

#include <iostream.h>

main()

{

 int num, sq, cube;

 num = 5;

 // Calculate the square and cube of the number.

 sq = (num * num), cube = (num * num * num);

 cout << “The square of “ << num << “ is “ << sq <<

 “ and the cube is “ << cube;

 return 0;

}

Chapter 11 ♦ Additional C++ Operators

234

This is not necessarily recommended, however, because it

doesn’t add anything to the program and actually decreases

its readability. In this example, the square and cube are

probably better computed on two separate lines.

2. The comma enables some interesting statements. Consider

the following section of code.

i = 10

j = (i = 12, i + 8);

When this code finishes executing, j has the value of 20—

even though this is not necessarily clear. In the first state-

ment, i is assigned 10. In the second statement, the comma

causes i to be assigned a value of 12, then j is assigned the

value of i + 8, or 20.

3. In the following section of code, ans is assigned the value

of 12, because the assignment before the comma is per-

formed first. Despite this right-to-left associativity of the

assignment operator, the comma’s sequence point forces

the assignment of 12 to x before x is assigned to ans.

ans = (y = 8, x = 12);

When this fragment finishes, y contains 8, x contains 12, and

ans also contains 12.

Bitwise Operators
The bitwise operators manipulate internal representations of

data and not just “values in variables” as the other operators do.

These bitwise operators require an understanding of Appendix A’s

binary numbering system, as well as a computer’s memory. This

section introduces the bitwise operators. The bitwise operators are

used for advanced programming techniques and are generally used

in much more complicated programs than this book covers.

Some people program in C++ for years and never learn the

bitwise operators. Nevertheless, understanding them can help you

improve a program’s efficiency and enable you to operate at a more

advanced level than many other programming languages allow.

235

EXAMPLE
C++ By

Bitwise Logical Operators

There are four bitwise logical operators, and they are shown in

Table 11.2. These operators work on the binary representations of

integer data. This enables systems programmers to manipulate

internal bits in memory and in variables. The bitwise operators are

not just for systems programmers, however. Application program-

mers also can improve their programs’ efficiency in several ways.

Table 11.2. Bitwise logical operators.

Operator Meaning

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

~ Bitwise 1’s complement

Each of the bitwise operators makes a bit-by-bit comparison of

internal data. Bitwise operators apply only to character and integer

variables and constants, and not to floating-point data. Because

binary numbers consist of 1s and 0s, these 1s and 0s (called bits) are

compared to each other to produce the desired result for each

bitwise operator.

Before you study the examples, you should understand Table

11.3. It contains truth tables that describe the action of each bitwise

operator on an integer’s—or character’s—internal-bit patterns.

Table 11.3. Truth tables.

Bitwise AND (&)

0 & 0 = 0

0 & 1 = 0

1 & 0 = 0

1 & 1 = 1

Bitwise operators
make bit-by-bit
comparisons of
internal data.

continues

Chapter 11 ♦ Additional C++ Operators

236

Table 11.3. Continued.

Bitwise inclusive OR (|)

0 | 0 = 0

0 | 1 = 1

1 | 0 = 1

1 | 1 = 1

Bitwise exclusive OR (^)

0 ^ 0 = 0

0 ^ 1 = 1

1 ^ 0 = 1

1 ^ 1 = 0

Bitwise 1’s complement (~)

~0 = 1

~1 = 0

In bitwise truth tables, you can replace the 1 and 0 with True

and False, respectively, if it helps you to understand the result better.

For the bitwise AND (&) truth table, both bits being compared by the

& operator must be True for the result to be True. In other words,

“True AND True results in True.”

TIP: By replacing the 1s and 0s with True and False, you might

be able to relate the bitwise operators to the regular logical

operators, && and ||, that you use for if comparisons.

The | bitwise operator is sometimes called the bitwise inclusive
OR operator. If one side of the | operator is 1 (True)—or if both sides

are 1—the result is 1 (True).

The ̂ operator is called bitwise exclusive OR. It means that either

side of the ^ operator must be 1 (True) for the result to be 1 (True), but

both sides cannot be 1 (True) at the same time.

For bitwise ^, one
side or the other—
but not both—must
be 1.

237

EXAMPLE
C++ By

The ~ operator, called bitwise 1’s complement, reverses each bit to

its opposite value.

NOTE: Bitwise 1’s complement does not negate a number. As

Appendix A, “Memory Addressing, Binary, and Hexadecimal

Review,” shows, most computers use a 2’s complement to

negate numbers. The bitwise 1’s complement reverses the bit

pattern of numbers, but it doesn’t add the additional 1 as the 2’s

complement requires.

You can test and change individual bits inside variables to

check for patterns of data. The following examples help to illustrate

each of the four bitwise operators.

Examples

1. If you apply the bitwise & operator to numerals 9 and 14, you

receive a result of 8. Figure 11.4 shows you why this is so.

When the binary values of 9 (1001) and 14 (1110) are com-

pared on a bitwise & basis, the resulting bit pattern is 8

(1000).

Figure 11.4. Performing bitwise & on 9 and 14.

In a C++ program, you can code this bitwise comparison as

follows.

Make result equal to the binary value of 9 (1001) ANDed to the
binary value of 14 (1110).

result = 9 & 14;

Chapter 11 ♦ Additional C++ Operators

238

The result variable holds 8, which is the result of the bitwise

&. The 9 (binary 1001) or 14 (binary 1110)—or both—also can

be stored in variables with the same result.

2. When you apply the bitwise | operator to the numbers 9 and

14, you get 15. When the binary values of 9 (1001) and 14

(1110) are compared on a bitwise | basis, the resulting bit

pattern is 15 (1111). result’s bits are 1 (True) in every posi-

tion where a 1 appears in both numbers.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 | 14;

The result variable holds 15, which is the result of the

bitwise |. The 9 or 14 (or both) also can be stored in

variables.

3. The bitwise ^ applied to 9 and 14 produces 7. Bitwise ^ sets

the resulting bits to 1 if one number or the other’s bit is 1, but

not if both of the matching bits are 1 at the same time.

In a C++ program, you can code this bitwise comparison as

follows:

result = 9 ^ 14;

The result variable holds 7 (binary 0111), which is the result

of the bitwise ^. The 9 or 14 (or both) also can be stored in

variables with the same result.

4. The bitwise ~ simply negates each bit. It is a unary bitwise

operator because you can apply it to only a single value at

any one time. The bitwise ~ applied to 9 results in 6, as

shown in Figure 11.5.

Figure 11.5. Performing bitwise ~ on the number 9.

239

EXAMPLE
C++ By

In a C++ program, you can code this bitwise operation like

this:

result = ~9;

The result variable holds 6, which is the result of the bit-

wise ~. The 9 can be stored in a variable with the same result.

5. You can take advantage of the bitwise operators to perform

tests on data that you cannot do as efficiently in other ways.

For example, suppose you want to know if the user typed an

odd or even number (assuming integers are being input).

You can use the modulus operator (%) to determine whether

the remainder—after dividing the input value by 2—is 0

or 1. If the remainder is 0, the number is even. If the remain-

der is 1, the number is odd.

The bitwise operators are more efficient than other operators

because they directly compare bit patterns without using

any mathematical operations.

Because a number is even if its bit pattern ends in a 0 and

odd if its bit pattern ends in 1, you also can test for odd or

even numbers by applying the bitwise & to the data and to a

binary 1. This is more efficient than using the modulus

operator. The following program informs users if their input

value is odd or even using this technique.

Identify the file and include the input/output header file. This
program tests for odd or even input. You need a place to put the
user’s number, so declare the input variable as an integer.

Ask the user for the number to be tested. Put the user’s answer in
input. Use the bitwise operator, &, to test the number. If the bit on
the extreme right in input is 1, tell the user that the number is odd.
If the bit on the extreme right in input is 0, tell the user that the
number is even.

// Filename: C11ODEV.CPP

// Uses a bitwise & to determine whether a

// number is odd or even.

#include <iostream.h>

main()

{

Chapter 11 ♦ Additional C++ Operators

240

Only bit 6
is different

 int input; // Will hold user’s number

 cout << “What number do you want me to test? “;

 cin >> input;

 if (input & 1) // True if result is 1;

 // otherwise it is false (0)

 { cout << “The number “ << input << “ is odd\n”; }

 else

 { cout << “The number “ << input << “ is even\n”; }

 return 0;

}

6. The only difference between the bit patterns for uppercase

and lowercase characters is bit number 5 (the third bit from

the left, as shown in Appendix A, “Memory Addressing,

Binary, and Hexadecimal Review”). For lowercase letters, bit

5 is a 1. For uppercase letters, bit 5 is a 0. Figure 11.6 shows

how A and B differ from a and b by a single bit.

Only bit 6
is different

Figure 11.6. Bitwise difference between two uppercase and two lower-
case ASCII letters.

To convert a character to uppercase, you have to turn off

(change to a 0) bit number 5. You can apply a bitwise & to the

input character and 223 (which is 11011111 in binary) to turn

off bit 5 and convert any input character to its uppercase

equivalent. If the number is already in uppercase, this

bitwise & does not change it.

The 223 (binary 11011111) is called a bit mask because it

masks (just as masking tape masks areas not to be painted)

bit 5 so it becomes 0, if it is not already. The following

program does this to ensure that users typed uppercase

characters when they were asked for their initials.

241

EXAMPLE
C++ By

// Filename: C11UPCS1.CPP

// Converts the input characters to uppercase

// if they aren’t already.

#include <iostream.h>

main()

{

 char first, middle, last; // Will hold user’s initials

 int bitmask=223; // 11011111 in binary

 cout << “What is your first initial? “;

 cin >> first;

 cout << “What is your middle initial? “;

 cin >> middle;

 cout << “What is your last initial? “;

 cin >> last;

 // Ensure that initials are in uppercase.

 first = first & bitmask; // Turn off bit 5 if

 middle = middle & bitmask; // it is not already

 last = last & bitmask; // turned off.

 cout << “Your initials are “ << first << “ “ <<

 middle << “ “ << last;

 return 0;

}

The following output shows what happens when two of the

initials are typed with lowercase letters. The program con-

verts them to uppercase before printing them again. Al-

though there are other ways to convert to lowercase, none

are as efficient as using the & bitwise operator.

What is your first initial? g

What is your middle initial? M

What is your last initial? p

Your initials are: G M P

Chapter 11 ♦ Additional C++ Operators

242

Review Questions
The answers to the review questions are in Appendix B.

1. What set of statements does the conditional operator

replace?

2. Why is the conditional operator called a “ternary” operator?

3. Rewrite the following conditional operator as an if-else

statement.

ans = (a == b) ? c + 2 : c + 3;

4. True or false: The following statements produce the same

results.

var++;

and

var = var + 1;

5. Why is using the increment and decrement operators more

efficient than using the addition and subtraction operators?

6. What is a sequence point?

7. Can the output of the following code section be determined?

age = 20;

printf(“You are now %d, and will be %d in one year”,

 age, age++);

8. What is the output of the following program section?

char name[20] = “Mike”;

cout << “The size of name is “ << sizeof(name) << “\n”;

9. What is the result of each of the following bitwise True-False

expressions?

a. 1 ^ 0 & 1 & 1 | 0

b. 1 & 1 & 1 & 1

c. 1 ^ 1 ^ 1 ^ 1

d. ~(1 ^ 0)

243

EXAMPLE
C++ By

Review Exercises
1. Write a program that prints the numerals from 1 to 10. Use

ten different couts and only one variable called result to hold

the value before each cout. Use the increment operator to

add 1 to result before each cout.

2. Write a program that asks users for their ages. Using a single

printf() that includes a conditional operator, print on-screen

the following if the input age is over 21,

You are not a minor.

or print this otherwise:

You are still a minor.

This printf() might be long, but it helps to illustrate how the

conditional operator can work in statements where if-else

logic does not.

3. Use the conditional operator—and no if-else statements—to

write the following tax-calculation routine: A family pays no

tax if its annual salary is less than $5,000. It pays a 10 percent

tax if the salary range begins at $5,000 and ends at $9,999. It

pays a 20 percent tax if the salary range begins at $10,000

and ends at $19,999. Otherwise, the family pays a 30 percent

tax.

4. Write a program that converts an uppercase letter to a

lowercase letter by applying a bitmask and one of the bit-

wise logical operators. If the character is already in lower-

case, do not change it.

Summary
Now you have learned almost every operator in the C++

language. As explained in this chapter, conditional, increment, and

decrement are three operators that enable C++ to stand apart from

many other programming languages. You must always be aware of

the precedence table whenever you use these, as you must with all

operators.

Chapter 11 ♦ Additional C++ Operators

244

The sizeof and sequence point operators act unlike most others.

The sizeof is a compile operator, and it works in a manner similar to

the #define preprocessor directive because they are both replaced by

their values at compile time. The sequence point enables you to have

multiple statements on the same line—or in a single expression.

Reserve the sequence point for declaring variables only because it

can be unclear when it’s combined with other expressions.

This chapter concludes the discussion on C++ operators. Now

that you can compute just about any result you will ever need, it is

time to discover how to gain more control over your programs. The

next few chapters introduce control loops that give you repetitive

power in C++.

