
245

EXAMPLE
C++ By

12

The while Loop

The repetitive capabilities of computers make them good tools for

processing large amounts of information. Chapters 12-15 introduce

you to C++ constructs, which are the control and looping commands

of programming languages. C++ constructs include powerful, but

succinct and efficient, looping commands similar to those of other

languages you already know.

The while loops enable your programs to repeat a series of

statements, over and over, as long as a certain condition is always

met. Computers do not get “bored” while performing the same tasks

repeatedly. This is one reason why they are so important in business

data processing.

This chapter teaches you the following:

♦ The while loop

♦ The concept of loops

♦ The do-while loop

♦ Differences between if and while loops

♦ The exit() function

♦ The break statement

♦ Counters and totals

Chapter 12 ♦ The while Loop

246

After completing this chapter, you should understand the first

of several methods C++ provides for repeating program sections.

This chapter’s discussion of loops includes one of the most impor-

tant uses for looping: creating counter and total variables.

The while Statement
The while statement is one of several C++ construct statements.

Each construct (from construction) is a programming language state-

ment—or a series of statements—that controls looping. The while,

like other such statements, is a looping statement that controls the

execution of a series of other statements. Looping statements cause

parts of a program to execute repeatedly, as long as a certain

condition is being met.

The format of the while statement is

while (test expression)

 { block of one or more C++ statements; }

The parentheses around test expression are required. As long

as test expression is True (nonzero), the block of one or more C++

statements executes repeatedly until test expression becomes False

(evaluates to zero). Braces are required before and after the body of

the while loop, unless you want to execute only one statement. Each

statement in the body of the while loop requires an ending semi-

colon.

The placeholder test expression usually contains relational,

and possibly logical, operators. These operators provide the True-

False condition checked in test expression. If test expression is False

when the program reaches the while loop for the first time, the body

of the while loop does not execute at all. Regardless of whether the

body of the while loop executes no times, one time, or many times,

the statements following the while loop’s closing brace execute if test

expression becomes False.

Because test expression determines when the loop finishes, the

body of the while loop must change the variables used in test

expression. Otherwise, test expression never changes and the while

loop repeats forever. This is known as an infinite loop, and you should

avoid it.

The body of a
while loop
executes repeatedly
as long as test
expression is True.

247

EXAMPLE
C++ By

TIP: If the body of the while loop contains only one statement,

the braces surrounding it are not required. It is a good habit to

enclose all while loop statements in braces, however, because if

you have to add statements to the body of the while loop later,

your braces are already there.

The Concept of Loops
You use the loop concept in everyday life. Any time you have

to repeat the same procedure, you are performing a loop—just as

your computer does with the while statement. Suppose you are

wrapping holiday gifts. The following statements represent the

looping steps (in while format) that you follow while gift-wrapping.

while (there are still unwrapped gifts)
 { Get the next gift;

Cut the wrapping paper;
Wrap the gift;
Put a bow on the gift;
Fill out a name card for the gift;
Put the wrapped gift with the others; }

Whether you have 3, 15, or 100 gifts to wrap, you use this

procedure (loop) repeatedly until every gift is wrapped. For an

example that is more easily computerized, suppose you want to total

all the checks you wrote in the previous month. You could perform

the following loop.

while (there are still checks from the last month to be totaled)
 { Add the amount of the next check to the total; }

The body of this pseudocode while loop has only one statement,

but that single statement must be performed until you have added

each one of the previous month’s checks. When this loop ends (when

no more checks from the previous month remain to be totaled), you

have the result.

The body of a while loop can contain one or more C++ state-

ments, including additional while loops. Your programs will be

Chapter 12 ♦ The while Loop

248

more readable if you indent the body of a while loop a few spaces to

the right. The following examples illustrate this.

Examples

1. Some programs presented earlier in the book require user

input with cin. If users do not enter appropriate values, these

programs display an error message and ask the user to enter

another value, which is an acceptable procedure.

Now that you understand the while loop construct, however,

you should put the error message inside a loop. In this way,

users see the message continually until they type proper

input values, rather than once.

The following program is short, but it demonstrates a while

loop that ensures valid keyboard input. It asks users

whether they want to continue. You can incorporate this

program into a larger one that requires user permission to

continue. Put a prompt, such as the one presented here, at

the bottom of a text screen. The text remains on-screen until

the user tells the program to continue executing.

Identify the file and include the necessary header file. In this
program, you want to ensure the user enters Y or N.
You have to store the user’s answer, so declare the ans variable as a
character. Ask the users whether they want to continue, and get
the response. If the user doesn’t type Y or N, ask the user for
another response.

// Filename: C12WHIL1.CPP

// Input routine to ensure user types a

// correct response. This routine can be part

// of a larger program.

#include <iostream.h>

main()

{

 char ans;

 cout << “Do you want to continue (Y/N)? “;

 cin >> ans; // Get user’s answer

249

EXAMPLE
C++ By

 while ((ans != ‘Y’) && (ans != ‘N’))

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N)?”; // again.

 cin >> ans;

 } // Body of while loop ends here.

 return 0;

}

Notice that the two cin functions do the same thing. You

must use an initial cin, outside the while loop, to provide an

answer for the while loop to check. If users type something

other than Y or N, the program prints an error message, asks

for another answer, then checks the new answer. This vali-

dation method is preferred over one where the reader only

has one additional chance to succeed.

The while loop tests the test expression at the top of the loop.

This is why the loop might never execute. If the test is

initially False, the loop does not execute even once. The

output from this program is shown as follows. The program

repeats indefinitely, until the relational test is True (as soon

as the user types either Y or N).

Do you want to continue (Y/N)? k

You must type a Y or an N

Do you want to continue (Y/N)? c

You must type a Y or an N

Do you want to continue (Y/N)? s

You must type a Y or an N

Do you want to continue (Y/N)? 5

You must type a Y or an N

Do you want to continue (Y/N)? Y

2. The following program is an example of an invalid while

loop. See if you can find the problem.

Chapter 12 ♦ The while Loop

250

// Filename: C12WHBAD.CPP

// Bad use of a while loop.

#include <iostream.h>

main()

{

 int a=10, b=20;

 while (a > 5)

 { cout << “a is “ << a << “, and b is “ << b << “\n”;

 b = 20 + a; }

 return 0;

}

This while loop is an example of an infinite loop. It is vital

that at least one statement inside the while changes a variable

in the test expression (in this example, the variable a); other-

wise, the condition is always True. Because the variable a

does not change inside the while loop, this program will

never end.

TIP: If you inadvertently write an infinite loop, you must stop

the program yourself. If you use a PC, this typically means

pressing Ctrl-Break. If you are using a UNIX-based system,

your system administrator might have to stop your program’s

execution.

3. The following program asks users for a first name, then uses

a while loop to count the number of characters in the name.

This is a string length program; it counts characters until it

reaches the null zero. Remember that the length of a string

equals the number of characters in the string, not including

the null zero.

// Filename: C12WHIL2.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

251

EXAMPLE
C++ By

 int count=0; // Will hold total characters in name

 // Get the user’s first name

 cout << “What is your first name? “;

 cin >> name;

 while (name[count] > 0) // Loop until null zero reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The loop continues as long as the value of the next character

in the name array is greater than zero. Because the last charac-

ter in the array is a null zero, the test is False on the name’s

last character and the statement following the body of the

loop continues.

NOTE: A built-in string function called strlen() determines

the length of strings. You learn about this function in Chap-

ter 22, “Character, String, and Numeric Functions.”

4. The previous string-length program’s while loop is not as

efficient as it could be. Because a while loop fails when its test

expression is zero, there is no need for the greater-than test.

By changing the test expression as the following program

shows, you can improve the efficiency of the string length

count.

// Filename: C12WHIL3.CPP

// Counts the number of letters in the user’s first name.

#include <iostream.h>

main()

{

 char name[15]; // Will hold user’s first name

 int count=0; // Will hold total characters in name

 // Get the user’s first name

Chapter 12 ♦ The while Loop

252

 cout << “What is your first name? “;

 cin >> name;

 while (name[count]) // Loop until null zero is reached.

 { count++; } // Add 1 to the count.

 cout << “Your name has “ << count << “ characters”;

 return 0;

}

The do-while Loop
The do-while statement controls the do-while loop, which is

similar to the while loop except the relational test occurs at the end

(rather than beginning) of the loop. This ensures the body of the loop

executes at least once. The do-while tests for a positive relational test;
as long as the test is True, the body of the loop continues to execute.

The format of the do-while is

do

 { block of one or more C++ statements; }

while (test expression)

test expression must be enclosed in parentheses, just as it must

in a while statement.

Examples

1. The following program is just like the first one you saw with

the while loop (C12WHIL1.CPP), except the do-while is used.

Notice the placement of test expression. Because this expres-

sion concludes the loop, user input does not have to appear

before the loop and again in the body of the loop.

// Filename: C12WHIL4.CPP

// Input routine to ensure user types a

// correct response. This routine might be part

// of a larger program.

The body of the
do-while loop
executes at least
once.

253

EXAMPLE
C++ By

#include <iostream.h>

main()

{

 char ans;

 do

 { cout << “\nYou must type a Y or an N\n”; // Warn

 // and ask

 cout << “Do you want to continue (Y/N) ?”; // again.

 cin >> ans; } // Body of while loop

 // ends here.

 while ((ans != ‘Y’) && (ans != ‘N’));

 return 0;

}

2. Suppose you are entering sales amounts into the computer

to calculate extended totals. You want the computer to print

the quantity sold, part number, and extended total (quantity

times the price per unit), as the following program does.

// Filename: C12INV1.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information.

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no != -999)

 { cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

Chapter 12 ♦ The while Loop

254

 cin >> cost;

 ext_cost = cost * quantity;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) <<

 ext_cost;

 cout << “\n\n\n”; // Print two blank lines.

 }

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

Here is the output from this program:

*** Inventory Computation ***

What is the next part number (-999 to end)? 213

How many were bought? 12

What is the unit price of this item? 5.66

12 of # 213 will cost 67.92

What is the next part number (-999 to end)? 92

How many were bought? 53

What is the unit price of this item? .23

53 of # 92 will cost 12.19

What is the next part number (-999 to end)? -999

End of inventory computation

The do-while loop controls the entry of the customer sales

information. Notice the “trigger” that ends the loop. If the

user enters –999 for the part number, the do-while loop quits

because no part numbered –999 exists in the inventory.

However, this program can be improved in several ways.

The invoice can be printed to the printer rather than the

255

EXAMPLE
C++ By

screen. You learn how to direct your output to a printer in

Chapter 21, “Device and Character Input/Output.” Also, the

inventory total (the total amount of the entire order) can be

computed. You learn how to total such data in the “Counters

and Totals” section later in this chapter.

The if Loop Versus the while
Loop

Some beginning programmers confuse the if statement with

loop constructs. The while and do-while loops repeat a section of code

multiple times, depending on the condition being tested. The if

statement may or may not execute a section of code; if it does, it

executes that section only once.

Use an if statement when you want to conditionally execute a

section of code once, and use a while or do-while loop if you want to

execute a section more than once. Figure 12.1 shows differences

between the if statement and the two while loops.

Body executes only
once if test is true.

Test at top of loop.

Body loops continuously
as long as test is true.

Test at top of loop.

Figure 12.1. Differences between the if statement and the two while
loops.

Chapter 12 ♦ The while Loop

256

The exit() Function and break
Statement

C++ provides the exit() function as a way to leave a program

early (before its natural finish). The format of exit() is

exit(status);

where status is an optional integer variable or literal. If you are

familiar with your operating system’s return codes, status enables

you to test the results of C++ programs. In DOS, status is sent to the

operating system’s errorlevel environment variable, where it can be

tested by batch files.

Many times, something happens in a program that requires the

program’s termination. It might be a major problem, such as a disk

drive error. Perhaps users indicate that they want to quit the

program—you can tell this by giving your users a special value to

type with cin or scanf(). You can isolate the exit() function on a line

by itself, or anywhere else that a C++ statement or function can

appear. Typically, exit() is placed in the body of an if statement to

end the program early, depending on the result of some relational

test.

Always include the stdlib.h header file when you use exit().

This file describes the operation of exit() to your program. When-

ever you use a function in a program, you should know its corre-

sponding #include header file, which is usually listed in the compiler’s

reference manual.

Instead of exiting an entire program, however, you can use the

break statement to exit the current loop. The format of break is

break;

The break statement can go anywhere in a C++ program that

any other statement can go, but it typically appears in the body of a

while or do-while loop, used to leave the loop early. The following

examples illustrate the exit() function and the break statement.

NOTE: The break statement exits only the most current loop. If

you have a while loop in another while loop, break exits only the

internal loop.

The exit()
function provides an
early exit from your
program.

The break
statement ends the
current loop.

257

EXAMPLE
C++ By

Examples

1. Here is a simple program that shows you how the exit()

function works. This program looks as though it prints

several messages on-screen, but it doesn’t. Because exit()

appears early in the code, this program quits immediately

after main()’s opening brace.

// C12EXIT1.CPP

// Quits early due to exit() function.

#include <iostream.h>

#include <stdlib.h> // Required for exit().

main()

{

 exit(0); // Forces program to end here.

 cout << “C++ programming is fun.\n”;

 cout << “I like learning C++ by example!\n”;

 cout << “C++ is a powerful language that is “ <<

 “not difficult to learn.”;

 return 0;

}

2. The break statement is not intended to be as strong a pro-

gram exit as the exit() function. Whereas exit() ends the

entire program, break quits only the loop that is currently

active. In other words, break is usually placed inside a while

or do-while loop to “simulate” a finished loop. The statement

following the loop executes after a break occurs, but the

program does not quit as it does with exit().

The following program appears to print C++ is fun! until the

user enters N to stop it. The message prints only once, how-

ever, because the break statement forces an early exit from

the loop.

// Filename: C12BRK.CPP

// Demonstrates the break statement.

#include <iostream.h>

main()

Chapter 12 ♦ The while Loop

258

{

 char user_ans;

 do

 { cout << “C++ is fun! \n”;

 break; // Causes early exit.

 cout << “Do you want to see the message again (N/Y)? “;

 cin >> user_ans;

 } while (user_ans == ‘Y’);

 cout << “That’s all for now\n”;

 return 0;

}

This program always produces the following output:

C++ is fun!

That’s all for now

You can tell from this program’s output that the break state-

ment does not allow the do-while loop to reach its natural

conclusion, but causes it to finish early. The final cout prints

because only the current loop—and not the entire pro-

gram—exits with the break statement.

3. Unlike the previous program, break usually appears after an

if statement. This makes it a conditional break, which occurs

only if the relational test of the if statement is True.

A good illustration of this is the inventory program you saw

earlier (C12INV1.CPP). Even though the users enter –999

when they want to quit the program, an additional if test is

needed inside the do-while. The –999 ends the do-while loop,

but the body of the do-while still needs an if test, so the

remaining quantity and cost prompts are not given.

If you insert a break after testing for the end of the user’s

input, as shown in the following program, the do-while will

not need the if test. The break quits the do-while as soon as

the user signals the end of the inventory by entering –999 as

the part number.

259

EXAMPLE
C++ By

// Filename: C12INV2.CPP

// Gets inventory information from user and prints

// an inventory detail listing with extended totals.

#include <iostream.h>

#include <iomanip.h>

main()

{

 int part_no, quantity;

 float cost, ext_cost;

 cout << “*** Inventory Computation ***\n\n”; // Title

 // Get inventory information

 do

 { cout << “What is the next part number (-999 to end)? “;

 cin >> part_no;

 if (part_no == -999)

 { break; } // Exit the loop if

 // no more part numbers.

 cout << “How many were bought? “;

 cin >> quantity;

 cout << “What is the unit price of this item? “;

 cin >> cost;

 cout << “\n” << quantity << “ of # “ << part_no <<

 “ will cost “ << setprecision(2) << cost*quantity;

 cout << “\n\n\n”; // Print two blank lines.

 } while (part_no != -999); // Loop only if part

 // number is not -999.

 cout << “End of inventory computation\n”;

 return 0;

}

4. You can use the following program to control the two other

programs. This program illustrates how C++ can pass in-

formation to DOS with exit(). This is your first example of a

menu program. Similar to a restaurant menu, a C++ menu

program lists possible user choices. The users decide what

they want the computer to do from the menu’s available

options. The mailing list application in Appendix F, “The

Mailing List Application,” uses a menu for its user options.

Chapter 12 ♦ The while Loop

260

This program returns either a 1 or a 2 to its operating system,

depending on the user’s selection. It is then up to the oper-

ating system to test the exit value and run the proper

program.

// Filename: C12EXIT2.CPP

// Asks user for his or her selection and returns

// that selection to the operating system with exit().

#include <iostream.h>

#include <stdlib.h>

main()

{

 int ans;

 do

 { cout << “Do you want to:\n\n”;

 cout << “\t1. Run the word processor \n\n”;

 cout << “\t2. Run the database program \n\n”;

 cout << “What is your selection? “;

 cin >> ans;

 } while ((ans != 1) && (ans != 2)); // Ensures user

 // enters 1 or 2.

 exit(ans); // Return value to operating system.

 return 0; // Return does not ever execute due to exit().

}

Counters and Totals
Counting is important for many applications. You might have

to know how many customers you have or how many people scored

over a certain average in your class. You might want to count how

many checks you wrote in the previous month with your computer-

ized checkbook system.

Before you develop C++ routines to count occurrences, think of

how you count in your own mind. If you were adding a total number

of something, such as the stamps in your stamp collection or the

261

EXAMPLE
C++ By

number of wedding invitations you sent out, you would probably

do the following:

Start at 0, and add 1 for each item being counted. When you are finished,
you should have the total number (or the total count).

This is all you do when you count with C++: Assign 0 to a

variable and add 1 to it every time you process another data value.

The increment operator (++) is especially useful for counting.

Examples

1. To illustrate using a counter, the following program prints

“Computers are fun!” on-screen 10 times. You can write a

program that has 10 cout statements, but that would not be

efficient. It would also be too cumbersome to have 5000 cout

statements, if you wanted to print that same message 5000

times.

By adding a while loop and a counter that stops after a

certain total is reached, you can control this printing, as the

following program shows.

// Filename: C12CNT1.CPP

// Program to print a message 10 times.

#include <iostream.h>

main()

{

 int ctr = 0; // Holds the number of times printed.

 do

 { cout << “Computers are fun!\n”;

 ctr++; // Add one to the count,

 // after each cout.

 } while (ctr < 10); // Print again if fewer

 // than 10 times.

 return 0;

}

Chapter 12 ♦ The while Loop

262

The output from this program is shown as follows. Notice

that the message prints exactly 10 times.

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

Computers are fun!

The heart of the counting process in this program is the

statement that follows.

ctr++;

You learned earlier that the increment operator adds 1 to a

variable. In this program, the counter variable is

incremented each time the do-while loops. Because the only

operation performed on this line is the increment of ctr, the

prefix increment (++ctr) produces the same results.

2. The previous program not only added to the counter vari-

able, but also performed the loop a specific number of times.

This is a common method of conditionally executing parts of

a program for a fixed number of times.

The following program is a password program. A password

is stored in an integer variable. The user must correctly enter

the matching password in three attempts. If the user does

not type the correct password in that time, the program

ends. This is a common method that dial-up computers use.

They enable a caller to try the password a fixed number of

times, then hang up the phone if that limit is exceeded. This

helps deter people from trying hundreds of different pass-

words at any one sitting.

If users guess the correct password in three tries, they see the

secret message.

263

EXAMPLE
C++ By

// Filename: C12PASS1.CPP

// Program to prompt for a password and

// check it against an internal one.

#include <iostream.h>

#include <stdlib.h>

main()

{

 int stored_pass = 11862;

 int num_tries = 0; // Counter for password attempts.

 int user_pass;

 while (num_tries < 3) // Loop only three

 // times.

 { cout << “What is the password (You get 3 tries...)? “;

 cin >> user_pass;

 num_tries++; // Add 1 to counter.

 if (user_pass == stored_pass)

 { cout << “You entered the correct password.\n”;

 cout << “The cash safe is behind the picture “ <<

 “of the ship.\n”;

 exit(0);

 }

 else

 { cout << “You entered the wrong password.\n”;

 if (num_tries == 3)

 { cout << “Sorry, you get no more chances”; }

 else

 { cout << “You get “ << (3-num_tries) <<

 “ more tries...\n”;}

 }

 } // End of while loop.

 exit(0);

 return 0;

}

This program gives users three chances in case they type

some mistakes. After three unsuccessful attempts, the pro-

gram quits without displaying the secret message.

Chapter 12 ♦ The while Loop

264

3. The following program is a letter-guessing game. It includes

a message telling users how many tries they made before

guessing the correct letter. A counter counts the number of

these tries.

// Filename: C12GUES.CPP

// Letter-guessing game.

#include <iostream.h>

main()

{

 int tries = 0;

 char comp_ans, user_guess;

 // Save the computer’s letter

 comp_ans = ‘T’; // Change to a different

 // letter if desired.

 cout << “I am thinking of a letter...”;

 do

 { cout << “What is your guess? “;

 cin >> user_guess;

 tries++; // Add 1 to the guess-counting variable.

 if (user_guess > comp_ans)

 { cout << “Your guess was too high\n”;

 cout << “\nTry again...”;

 }

 if (user_guess < comp_ans)

 { cout << “Your guess was too low\n”;

 cout << “\nTry again...”;

 }

 } while (user_guess != comp_ans); // Quit when a

 // match is found.

 // They got it right, let them know.

 cout << “*** Congratulations! You got it right! \n”;

 cout << “It took you only “ << tries <<

 “ tries to guess.”;

 return 0;

}

265

EXAMPLE
C++ By

Here is the output of this program:

I am thinking of a letter...What is your guess? E

Your guess was too low

Try again...What is your guess? X

Your guess was too high

Try again...What is your guess? H

Your guess was too low

Try again...What is your guess? O

Your guess was too low

Try again...What is your guess? U

Your guess was too high

Try again...What is your guess? Y

Your guess was too high

Try again...What is your guess? T

*** Congratulations! You got it right!

It took you only 7 tries to guess.

Producing Totals

Writing a routine to add values is as easy as counting. Instead

of adding 1 to the counter variable, you add a value to the total

variable. For instance, if you want to find the total dollar amount of

checks you wrote during December, you can start at nothing (0) and

add the amount of every check written in December. Instead of

building a count, you are building a total.

When you want C++ to add values, just initialize a total

variable to zero, then add each value to the total until you have

included all the values.

Chapter 12 ♦ The while Loop

266

Examples

1. Suppose you want to write a program that adds your grades

for a class you are taking. The teacher has informed you that

you earn an A if you can accumulate over 450 points.

The following program keeps asking you for values until

you type –1. The –1 is a signal that you are finished entering

grades and now want to see the total. This program also

prints a congratulatory message if you have enough points

for an A.

// Filename: C12GRAD1.CPP

// Adds grades and determines whether you earned an A.

#include <iostream.h>

include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade; // Holds individual grades.

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; } // Add to total.

 } while (grade >= 0.0); // Quit when -1 entered.

 // Control begins here if no more grades.

 cout << “\n\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points\n”;

 if (total_grade >= 450.00)

 { cout << “** You made an A!!”; }

 return 0;

}

Notice that the -1 response is not added to the total number

of points. This program checks for the -1 before adding to

total_grade. Here is the output from this program:

267

EXAMPLE
C++ By

What is your grade? (-1 to end) 87.6

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) 78.7

What is your grade? (-1 to end) -1

You made a total of 258.7 points

2. The following program is an extension of the grade-

calculating program. It not only totals the points, but also

computes their average.

To calculate the average grade, the program must first

determine how many grades were entered. This is a subtle

problem because the number of grades to be entered is

unknown in advance. Therefore, every time the user enters a

valid grade (not –1), the program must add 1 to a counter as

well as add that grade to the total variable. This is a combi-

nation counting and totaling routine, which is common in

many programs.

// Filename: C12GRAD2.CPP

// Adds up grades, computes average,

// and determines whether you earned an A.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float total_grade=0.0;

 float grade_avg = 0.0;

 float grade;

 int grade_ctr = 0;

 do

 { cout << “What is your grade? (-1 to end) “;

 cin >> grade;

 if (grade >= 0.0)

 { total_grade += grade; // Add to total.

 grade_ctr ++; } // Add to count.

 } while (grade >= 0.0); // Quit when -1 entered.

Chapter 12 ♦ The while Loop

268

 // Control begins here if no more grades.

 grade_avg = (total_grade / grade_ctr); // Compute

 // average.

 cout << “\nYou made a total of “ << setprecision(1) <<

 total_grade << “ points.\n”;

 cout << “Your average was “ << grade_avg << “\n”;

 if (total_grade >= 450.0)

 { cout << “** You made an A!!”; }

 return 0;

}

Below is the output of this program. Congratulations! You

are on your way to becoming a master C++ programmer.

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 98.7

What is your grade? (-1 to end) 67.8

What is your grade? (-1 to end) 92.4

What is your grade? (-1 to end) -1

You made a total of 326.68 points.

Your average was 81.7

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between the while loop and the

do-while loop?

2. What is the difference between a total variable and a counter

variable?

3. Which C++ operator is most useful for counting?

4. True or false: Braces are not required around the body of

while and do-while loops.

269

EXAMPLE
C++ By

5. What is wrong with the following code?

while (sales > 50)

 cout << “Your sales are very good this month.\n”;

 cout << “You will get a bonus for your high sales\n”;

6. What file must you include as a header file if you use exit()?

7. How many times does this printf() print?

int a=0;

do

 { printf(“Careful \n”);

 a++; }

while (a > 5);

8. How can you inform DOS of the program exit status?

9. What is printed to the screen in the following section of

code?

a = 1;

while (a < 4)

 { cout << “This is the outer loop\n”;

 a++;

 while (a <= 25)

 { break;

 cout << “This prints 25 times\n”; }

 }

Review Exercises
1. Write a program with a do-while loop that prints the numer-

als from 10 to 20 (inclusive), with a blank line between each

number.

2. Write a weather-calculator program that asks for a list of the

previous 10 days’ temperatures, computes the average, and

prints the results. You have to compute the total as the input

occurs, then divide that total by 10 to find the average. Use a

while loop for the 10 repetitions.

Chapter 12 ♦ The while Loop

270

3. Rewrite the program in Exercise 2 using a do-while loop.

4. Write a program, similar to the weather calculator in Exer-

cise 2, but generalize it so it computes the average of any

number of days’ temperatures. (Hint: You have to count the

number of temperatures to compute the final average.)

5. Write a program that produces your own ASCII table on-

screen. Don’t print the first 31 characters because they are

nonprintable. Print the codes numbered 32 through 255 by

storing their numbers in integer variables and printing their

ASCII values using printf() and the “%c” format code.

Summary
This chapter showed you two ways to produce a C++ loop: the

while loop and the do-while loop. These two variations of while loops

differ in where they test their test condition statements. The while

tests at the beginning of its loop, and the do-while tests at the end.

Therefore, the body of a do-while loop always executes at least once.

You also learned that the exit() function and break statement add

flexibility to the while loops. The exit() function terminates the

program, and the break statement terminates only the current loop.

This chapter explained two of the most important applications

of loops: counters and totals. Your computer can be a wonderful tool

for adding and counting, due to the repetitive capabilities offered

with while loops.

The next chapter extends your knowledge of loops by showing

you how to create a determinate loop, called the for loop. This feature

is useful when you want a section of code to loop for a specified

number of times.

