
605

EXAMPLE
C++ By

29

Arrays of
Structures

This chapter builds on the previous one by showing you how to

create many structures for your data. After creating an array of

structures, you can store many occurrences of your data values.

Arrays of structures are good for storing a complete employee

file, inventory file, or any other set of data that fits in the structure

format. Whereas arrays provide a handy way to store several values

that are the same type, arrays of structures store several values of

different types together, grouped as structures.

This chapter introduces the following concepts:

♦ Creating arrays of structures

♦ Initializing arrays of structures

♦ Referencing elements from a structure array

♦ Arrays as members

Many C++ programmers use arrays of structures as a prelude

to storing their data in a disk file. You can input and calculate your

disk data in arrays of structures, and then store those structures in

memory. Arrays of structures also provide a means of holding data

you read from the disk.

Chapter 29 ♦ Arrays of Structures

606

Declaring Arrays
of Structures

It is easy to declare an array of structures. Specify the number

of reserved structures inside array brackets when you declare the

structure variable. Consider the following structure definition:

struct stores

 { int employees;

 int registers;

 double sales;

 } store1, store2, store3, store4, store5;

This structure should not be difficult for you to understand

because there are no new commands used in the structure declara-

tion. This structure declaration creates five structure variables.

Figure 29.1 shows how C++ stores these five structures in memory.

Each of the structure variables has three members—two integers

followed by a double floating-point value.

Figure 29.1. The structure of Store 1, Store 2, Store 3, Store 4, and
Store 5.

607

EXAMPLE
C++ By

If the fourth store increased its employee count by three, you

could update the store’s employee number with the following

assignment statement:

store4.employees += 3; // Add three to this store’s

 // employee count.

Suppose the fifth store just opened and you want to initialize its

members with data. If the stores are a chain and the new store is

similar to one of the others, you can begin initializing the store’s data

by assigning each of its members the same data as another store’s,

like this:

store5 = store2; // Define initial values for

 // the members of store5.

Such structure declarations are fine for a small number of

structures, but if the stores were a national chain, five structure

variables would not be enough. Suppose there were 1000 stores. You

would not want to create 1000 different store variables and work

with each one individually. It would be much easier to create an

array of store structures.

Consider the following structure declaration:

struct stores

 { int employees;

 int registers;

 double sales;

 } store[1000];

In one quick declaration, this code creates 1000 store structures,

each one containing three members. Figure 29.2 shows how these

structure variables appear in memory. Notice the name of each

individual structure variable: store[0], store[1], store[2], and so on.

CAUTION: Be careful that your computer does not run out

of memory when you create a large number of structures.

Arrays of structures quickly consume valuable memory. You

might have to create fewer structures, storing more data in disk

files and less data in memory.

Arrays of structures
make working with
large numbers of
structure variables
manageable.

Chapter 29 ♦ Arrays of Structures

608

Figure 29.2. An array of the store structures.

The element store[2] is an array element. This array element,

unlike the others you have seen, is a structure variable. Therefore, it

contains three members, each of which you can reference with the

dot operator.

The dot operator works the same way for structure array

elements as it does for regular structure variables. If the number of

employees for the fifth store (store[4]) increased by three, you could

update the structure variable like this:

store[4].employees += 3; // Add three to this store’s

 // employee count.

You can assign complete structures to one another also by

using array notation. To assign all the members of the 20th store to

the 45th store, you would do this:

609

EXAMPLE
C++ By

store[44] = store[19]; // Copy all members from the

 // 20th store to the 45th.

The rules of arrays are still in force here. Each element of the

array called store is the same data type. The data type of store is the

structure stores. As with any array, each element must be the same

data type; you cannot mix data types in the same array. This array’s

data type happens to be a structure you created containing three

members. The data type for store[316] is the same for store[981] and

store[74].

The name of the array, store, is a pointer constant to the starting

element of the array, store[0]. Therefore, you can use pointer nota-

tion to reference the stores. To assign store[60] the same value as

store[23], you can reference the two elements like this:

*(store+60) = *(store+23);

You also can mix array and pointer notation, such as

store[60] = *(store+23);

and receive the same results.

You can increase the sales of store[8] by 40 percent using

pointer or subscript notation as well, as in

store[8].sales = (*(store+8)).sales * 1.40;

The extra pair of parentheses are required because the dot

operator has precedence over the dereferencing symbol in C++’s

hierarchy of operators (see Appendix D, “C++ Precedence Table”).

Of course, in this case, the code is not helped by the pointer notation.

The following is a much clearer way to increase the sales by 40

percent:

store[8].sales *= 1.40;

The following examples build an inventory data-entry system

for a mail-order firm using an array of structures. There is very little

new you have to know when working with arrays of structures. To

become comfortable with the arrays of structure notation, concen-

trate on the notation used when accessing arrays of structures and

their members.

Chapter 29 ♦ Arrays of Structures

610

Keep Your Array Notation Straight

You would never access the member sales like this:

store.sales[8] = 3234.54; // Invalid

Array subscripts follow only array elements. sales is not an

array; it was declared as being a double floating-point number.

store can never be used without a subscript (unless you are

using pointer notation).

Here is a corrected version of the previous assignment state-

ment:

store[8].sales=3234.54; // Correctly assigns

 // the value.

Examples

1. Suppose you work for a mail-order company that sells disk

drives. You are given the task of writing a tracking program

for the 125 different drives you sell. You must keep track of

the following information:

Storage capacity in megabytes

Access time in milliseconds

Vendor code (A, B, C, or D)

Cost

Price

Because there are 125 different disk drives in the inventory,

the data fits nicely into an array of structures. Each array

element is a structure containing the five members described

in the list.

The following structure definition defines the inventory:

struct inventory

{

611

EXAMPLE
C++ By

 long int storage;

 int access_time;

 char vendor_code;

 double code;

 double price;

} drive[125]; // Defines 125 occurrences of the structure.

2. When working with a large array of structures, your first

concern should be how the data inputs into the array ele-

ments. The best method of data-entry depends on the

application.

For example, if you are converting from an older computer-

ized inventory system, you have to write a conversion

program that reads the inventory file in its native format and

saves it to a new file in the format required by your C++

programs. This is no easy task. It demands that you have

extensive knowledge of the system from which you are

converting.

If you are writing a computerized inventory system for the

first time, your job is a little easier because you do not have

to convert the old files. You still must realize that someone

has to type the data into the computer. You must write a

data-entry program that receives each inventory item from

the keyboard and saves it to a disk file. You should give the

user a chance to edit inventory data to correct any data he or

she originally might have typed incorrectly.

One of the reasons disk files are introduced in the last half of

the book is that disk-file formats and structures share a

common bond. When you store data in a structure, or more

often, in an array of structures, you can easily write that data

to a disk file using straightforward disk I/O commands.

The following program takes the array of disk drive struc-

tures shown in the previous example and adds a data-entry

function so the user can enter data into the array of struc-

tures. The program is menu-driven. The user has a choice,

when starting the program, to add data, print data on-

screen, or exit the program. Because you have yet to see disk

I/O commands, the data in the array of structures goes away

Chapter 29 ♦ Arrays of Structures

612

when the program ends. As mentioned earlier, saving those

structures to disk is an easy task after you learn C++’s disk

I/O commands. For now, concentrate on the manipulation

of the structures.

This program is longer than many you previously have seen

in this book, but if you have followed the discussions of

structures and the dot operator, you should have little

trouble following the code.

Identify the program and include the necessary header files. Define a
structure that describes the format of each inventory item. Create an
array of structures called disk.

Display a menu that gives the user the choice of entering new
inventory data, displaying the data on-screen, or quitting the pro-
gram. If the user wants to enter new inventory items, prompt the user
for each item and store the data into the array of structures. If the user
wants to see the inventory, loop through each inventory item in the
array, displaying each one on-screen.

// Filename: C29DSINV.CPP

// Data-entry program for a disk drive company.

#include <iostream.h>

#include <stdlib.h>

#include <iomanip.h>

#include <stdio.h>

struct inventory // Global structure definition.

{

 long int storage;

 int access_time;

 char vendor_code;

 float cost;

 float price;

}; // No structure variables defined globally.

void disp_menu(void);

struct inventory enter_data();

void see_data(inventory disk[125], int num_items);

void main()

613

EXAMPLE
C++ By

{

 inventory disk[125]; // Local array of structures.

 int ans;

 int num_items=0; // Number of total items

 // in the inventory.

 do

 {

 do

 { disp_menu(); // Display menu of user choices.

 cin >> ans; // Get user’s request.

 } while ((ans<1) || (ans>3));

 switch (ans)

 { case (1): { disk[num_items] = enter_data(); // Enter

 // disk data.

 num_items++; // Increment number of items.

 break; }

 case (2): { see_data(disk, num_items); // Display

 // disk data.

 break; }

 default : { break; }

 }

 } while (ans!=3); // Quit program

 // when user is done.

 return;

}

void disp_menu(void)

{

 cout << “\n\n*** Disk Drive Inventory System ***\n\n”;

 cout << “Do you want to:\n\n”;

 cout << “\t1. Enter new item in inventory\n\n”;

 cout << “\t2. See inventory data\n\n”;

 cout << “\t3. Exit the program\n\n”;

 cout << “What is your choice? “;

 return;

}

inventory enter_data()

Chapter 29 ♦ Arrays of Structures

614

{

 inventory disk_item; // Local variable to fill

 // with input.

 cout << “\n\nWhat is the next drive’s storage in bytes? “;

 cin >> disk_item.storage;

 cout << “What is the drive’s access time in ms? “;

 cin >> disk_item.access_time;

 cout << “What is the drive’s vendor code (A, B, C, or D)? “;

 fflush(stdin); // Discard input buffer

 // before accepting character.

 disk_item.vendor_code = getchar();

 getchar(); // Discard carriage return

 cout << “What is the drive’s cost? “;

 cin >> disk_item.cost;

 cout << “What is the drive’s price? “;

 cin >> disk_item.price;

 return (disk_item);

}

void see_data(inventory disk[125], int num_items)

{

 int ctr;

 cout << “\n\nHere is the inventory listing:\n\n”;

 for (ctr=0;ctr<num_items;ctr++)

 {

 cout << “Storage: “ << disk[ctr].storage << “\t”;

 cout << “Access time: “ << disk[ctr].access_time << “\n”;

 cout << “Vendor code: “ << disk[ctr].vendor_code << “\t”;

 cout << setprecision(2);

 cout << “Cost: $” << disk[ctr].cost << “\t”;

 cout << “Price: $” << disk[ctr].price << “\n”;

 }

 return;

}

Figure 29.3 shows an item being entered into the inventory

file. Figure 29.4 shows the inventory listing being displayed

to the screen. There are many features and error-checking

functions you can add, but this program is the foundation of

a more comprehensive inventory system. You can easily

615

EXAMPLE
C++ By

adapt it to a different type of inventory, a video tape collec-

tion, a coin collection, or any other tracking system by

changing the structure definition and the member names

throughout the program.

Figure 29.3. Entering inventory information.

Arrays as Members
Members of structures can be arrays. Array members pose no

new problems, but you have to be careful when you access indi-

vidual array elements. Keeping track of arrays of structures that

contain array members might seem like a great deal of work on your

part, but there is nothing to it.

Consider the following structure definition. This statement

declares an array of 100 structures, each structure holding payroll

information for a company. Two of the members, name and depart-

ment, are arrays.

struct payroll

 { char name[25]; // Employee name array.

Chapter 29 ♦ Arrays of Structures

616

 int dependents;

 char department[10]; // Department name array.

 float salary;

 } employee[100]; // An array of 100 employees.

Figure 29.4. Displaying the inventory data.

Figure 29.5 shows what these structures look like. The first and

third members are arrays. name is an array of 25 characters, and

department is an array of 10 characters.

Suppose you must save the 25th employee’s initial in a charac-

ter variable. Assuming initial is already declared as a character

variable, the following statement assigns the employee’s initial to

the varible initial:

initial = employee[24].name[0];

The double subscripts might look confusing, but the dot opera-

tor requires a structure variable on its left (employee[24]) and a

member on its right (name’s first array element). Being able to refer to

member arrays makes the processing of character data in structures

simple.

617

EXAMPLE
C++ By

Figure 29.5. The payroll data.

Chapter 29 ♦ Arrays of Structures

618

Examples

1. Suppose an employee got married and wanted her name

changed in the payroll file. (She happens to be the 45th

employee in the array of structures.) Given the payroll

structure described in the previous section, this would

assign a new name to her structure:

strcpy(employee[44].name, “Mary Larson”); // Assign

 // a new name.

When you refer to a structure variable using the dot opera-

tor, you can use regular commands and functions to process

the data in the structure members.

2. A bookstore wants to catalog its inventory of books. The

following program creates an array of 100 structures. Each

structure contains several types of variables, including

arrays. This program is the data-entry portion of a larger

inventory system. Study the references to the members to

see how member-arrays are used.

// Filename: C29BOOK.CPP

// Bookstore data-entry program.

#include <iostream.h>

#include <stdio.h>

#include <ctype.h>

struct inventory

 { char title[25]; // Book’s title.

 char pub_date[19]; // Publication date.

 char author[20]; // Author’s name.

 int num; // Number in stock.

 int on_order; // Number on order.

 float retail; // Retail price.

 };

void main()

{

 inventory book[100];

 int total=0; // Total books in inventory.

 int ans;

619

EXAMPLE
C++ By

 do // This program enters data into the structures.

 { cout << “Book #” << (total+1) << “:\n”, (total+1);

 cout << “What is the title? “;

 gets(book[total].title);

 cout << “What is the publication date? “;

 gets(book[total].pub_date);

 cout << “Who is the author? “;

 gets(book[total].author);

 cout << “How many books of this title are there? “;

 cin >> book[total].num;

 cout << “How many are on order? “;

 cin >> book[total].on_order;

 cout << “What is the retail price? “;

 cin >> book[total].retail;

 fflush(stdin);

 cout << “\nAre there more books? (Y/N) “;

 ans=getchar();

 fflush(stdin); // Discard carriage return.

 ans=toupper(ans); // Convert to uppercase.

 if (ans==’Y’)

 { total++;

 continue; }

 } while (ans==’Y’);

 return;

}

You need much more to make this a usable inventory pro-

gram. An exercise at the end of this chapter recommends

ways you can improve on this program by adding a printing

routine and a title and author search. One of the first things

you should do is put the data-entry routine in a separate

function to make the code more modular. Because this

example is so short, and because the program performs only

one task (data-entry), there was no advantage to putting the

data-entry task in a separate function.

3. Here is a comprehensive example of the steps you might go

through to write a C++ program. You should begin to

understand the C++ language enough to start writing some

advanced programs.

Chapter 29 ♦ Arrays of Structures

620

Assume you have been hired by a local bookstore to write a

magazine inventory system. You have to track the following:

Magazine title (at most, 25 characters)

Publisher (at most, 20 characters)

Month (1, 2, 3,...12)

Publication year

Number of copies in stock

Number of copies on order

Price of magazine (dollars and cents)

Suppose there is a projected maximum of 1000 magazine

titles the store will ever carry. This means you need 1000

occurrences of the structure, not 1000 magazines total. Here

is a good structure definition for such an inventory:

struct mag_info

 { char title[25];

 char pub[25];

 int month;

 int year;

 int stock_copies;

 int order_copies;

 float price;

 } mags[1000]; // Define 1000 occurrences.

Because this program consists of more than one function, it

is best to declare the structure globally, and the structure

variables locally in the functions that need them.

This program needs three basic functions: a main() control-

ling function, a data-entry function, and a data printing

function. You can add much more, but this is a good start for

an inventory system. To keep the length of this example

reasonable, assume the user wants to enter several maga-

zines, then print them. (To make the program more “us-

able,” you should add a menu so the user can control when

she or he adds and prints the information, and should add

more error-checking and editing capabilities.)

621

EXAMPLE
C++ By

Here is an example of the complete data-entry and printing

program with prototypes. The arrays of structures are

passed between the functions from main().

// Filename: C29MAG.CPP

// Magazine inventory program for adding and displaying

// a bookstore’s magazines.

#include <iostream.h>

#include <ctype.h>

#include <stdio.h>

struct mag_info

 { char title[25];

 char pub[25];

 int month;

 int year;

 int stock_copies;

 int order_copies;

 float price;

 };

mag_info fill_mags(struct mag_info mag);

void print_mags(struct mag_info mags[], int mag_ctr);

void main()

{

 mag_info mags[1000];

 int mag_ctr=0; // Number of magazine titles.

 char ans;

 do

 { // Assumes there is

 // at least one magazine filled.

 mags[mag_ctr] = fill_mags(mags[mag_ctr]);

 cout << “Do you want to enter another magazine? “;

 fflush(stdin);

 ans = getchar();

 fflush(stdin); // Discards carriage return.

 if (toupper(ans) == ‘Y’)

 { mag_ctr++; }

 } while (toupper(ans) == ‘Y’);

 print_mags(mags, mag_ctr);

Chapter 29 ♦ Arrays of Structures

622

 return; // Returns to operating system.

}

void print_mags(mag_info mags[], int mag_ctr)

{

 int i;

 for (i=0; i<=mag_ctr; i++)

 { cout << “\n\nMagazine “ << i+1 << “:\n”;// Adjusts for

 // subscript.

 cout << “\nTitle: “ << mags[i].title << “\n”;

 cout << “\tPublisher: “ << mags[i].pub << “\n”;

 cout << “\tPub. Month: “ << mags[i].month << “\n”;

 cout << “\tPub. Year: “ << mags[i].year << “\n”;

 cout << “\tIn-stock: “ << mags[i].stock_copies << “\n”;

 cout << “\tOn order: “ << mags[i].order_copies << “\n”;

 cout << “\tPrice: “ << mags[i].price << “\n”;

 }

 return;

}

mag_info fill_mags(mag_info mag)

{

 puts(“\n\nWhat is the title? “);

 gets(mag.title);

 puts(“Who is the publisher? “);

 gets(mag.pub);

 puts(“What is the month (1, 2, ..., 12)? “);

 cin >> mag.month;

 puts(“What is the year? “);

 cin >> mag.year;

 puts(“How many copies in stock? “);

 cin >> mag.stock_copies;

 puts(“How many copies on order? “);

 cin >> mag.order_copies;

 puts(“How much is the magazine? “);

 cin >> mag.price;

 return (mag);

}

623

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: Each element in an array of structures must be

the same type.

2. What is the advantage of creating an array of structures

rather than using individual variable names for each struc-

ture variable?

3. Given the following structure declaration:

struct item

 { char part_no[8];

 char descr[20];

 float price;

 int in_stock;

 } inventory[100];

a. How would you assign a price of 12.33 to the 33rd item’s

in-stock quantity?

b. How would you assign the first character of the 12th

item’s part number the value of X?

c. How would you assign the 97th inventory item the same

values as the 63rd?

4. Given the following structure declaration:

struct item

 { char desc[20];

 int num;

 float cost;

 } inventory[25];

a. What is wrong with the following statement?

item[1].cost = 92.32;

b. What is wrong with the following statement?

strcpy(inventory.desc, “Widgets”);

Chapter 29 ♦ Arrays of Structures

624

c. What is wrong with the following statement?

inventory.cost[10] = 32.12;

Review Exercises
1. Write a program that stores an array of friends’ names,

phone numbers, and addresses and prints them two ways:

with their name, address, and phone number, or with only

their name and phone number for a phone listing.

2. Add a sort function to the program in Exercise 1 so you can

print your friends’ names in alphabetical order. (Hint: You

have to make the member holding the names a character

pointer.)

3. Expand on the book data-entry program, C29BOOK.CPP,

by adding features to make it more usable (such as search

book by author, by title, and print an inventory of books on

order).

Summary
You have mastered structures and arrays of structures. Many

useful inventory and tracking programs can be written using struc-

tures. By being able to create arrays of structures, you can now create

several occurrences of data.

The next step in the process of learning C++ is to save these

structures and other data to disk files. The next two chapters explore

the concepts of disk file processing.

