
625

EXAMPLE
C++ By

30

Sequential Files

So far, every example in this book has processed data that resided

inside the program listing or came from the keyboard. You assigned

constants and variables to other variables and created new data

values from expressions. The programs also received input with cin,

gets(), and the character input functions.

The data created by the user and assigned to variables with

assignment statements is sufficient for some applications. With the

large volumes of data most real-world applications must process,

however, you need a better way of storing that data. For all but the

smallest computer programs, disk files offer the solution.

After storing data on the disk, the computer helps you enter,

find, change, and delete the data. The computer and C++ are simply

tools to help you manage and process data. This chapter focuses on

disk- and file-processing concepts and teaches you the first of two

methods of disk access, sequential file access.
This chapter introduces you to the following concepts:

♦ An overview of disk files

♦ The types of files

♦ Processing data on the disk

♦ Sequential file access

♦ File I/O functions

Chapter 30 ♦ Sequential Files

626

After this chapter, you will be ready to tackle the more ad-

vanced random-file-access methods covered in the next chapter. If

you have programmed computerized data files with another pro-

gramming language, you might be surprised at how C++ borrows

from other programming languages, especially BASIC, when work-

ing with disk files. If you are new to disk-file processing, disk files

are simple to create and to read.

Why Use a Disk?
The typical computer system has much less memory storage

than hard disk storage. Your disk drive holds much more data than

can fit in your computer’s RAM. This is the primary reason for using

the disk for storing your data. The disk memory, because it is

nonvolatile, also lasts longer; when you turn your computer off, the

disk memory is not erased, whereas RAM is erased. Also, when your

data changes, you (or more important, your users) do not have to

edit the program and look for a set of assignment statements.

Instead, the users run previously written programs that make

changes to the disk data.

This makes programming more difficult at first because pro-

grams have to be written to change the data on the disk.

Nonprogrammers, however, can then use the programs and modify

the data without knowing C++.

The capacity of your disk makes it a perfect place to store your

data as well as your programs. Think about what would happen if

all data had to be stored with a program’s assignment statements.

What if the Social Security Office in Washington, D.C., asked you to

write a C++ program to compute, average, filter, sort, and print each

person’s name and address in his or her files? Would you want your

program to include millions of assignment statements? Not only

would you not want the program to hold that much data, but it could

not do so because only relatively small amounts of data fit in a

program before you run out of RAM.

Disks hold more
data than computer
memory.

627

EXAMPLE
C++ By

By storing data on your disk, you are much less limited because

you have more storage. Your disk can hold as much data as you have

disk capacity. Also, if your program requirements grow, you can

usually increase your disk space, whereas you cannot always add

more RAM to your computer.

NOTE: C++ cannot access the special extended or expanded

memory some computers have.

When working with disk files, C++ does not have to access

much RAM because C++ reads data from your disk drive and

processes the data only parts at a time. Not all your disk data has to

reside in RAM for C++ to process it. C++ reads some data, processes

it, and then reads some more. If C++ requires disk data a second

time, it rereads that place on the disk.

Types of Disk File Access
Your programs can access files two ways: through sequential

access or random access. Your application determines the method

you should choose. The access mode of a file determines how you

read, write, change, and delete data from the file. Some of your files

can be accessed in both ways, sequentially and randomly as long as

your programs are written properly and the data lends itself to both

types of file access.

A sequential file has to be accessed in the same order the file

was written. This is analogous to cassette tapes: You play music in

the same order it was recorded. (You can quickly fast-forward or

rewind over songs you do not want to listen to, but the order of the

songs dictates what you do to play the song you want.) It is difficult,

and sometimes impossible, to insert data in the middle of a sequen-

tial file. How easy is it to insert a new song in the middle of two other

songs on a tape? The only way to truly add or delete records from the

middle of a sequential file is to create a completely new file that

combines both old and new records.

It might seem that sequential files are limiting, but it turns

out that many applications lend themselves to sequential-file

processing.

Chapter 30 ♦ Sequential Files

628

Unlike sequential files, you can access random-access files in

any order you want. Think of data in a random-access file as you

would songs on a compact disc or record; you can go directly to any

song you want without having to play or fast-forward over the other

songs. If you want to play the first song, the sixth song, and then the

fourth song, you can do so. The order of play has nothing to do with

the order in which the songs were originally recorded. Random-file

access sometimes takes more programming but rewards your effort

with a more flexible file-access method. Chapter 31 discusses how to

program for random-access files.

Sequential File Concepts
There are three operations you can perform on sequential disk

files. You can

♦ Create disk files

♦ Add to disk files

♦ Read from disk files

Your application determines what you must do. If you are

creating a disk file for the first time, you must create the file and write

the initial data to it. Suppose you wanted to create a customer data

file. You would create a new file and write your current customers

to that file. The customer data might originally be in arrays, arrays

of structures, pointed to with pointers, or placed in regular variables

by the user.

Over time, as your customer base grows, you can add new

customers to the file (called appending to the file). When you add to

the end of a file, you append to that file. As your customers enter

your store, you would read their information from the customer

data file.

Customer disk processing is an example of one disadvantage

of sequential files, however. Suppose a customer moves and wants

you to change his or her address in your files. Sequential-access files

do not lend themselves well to changing data stored in them. It is

also difficult to remove information from sequential files. Random

files, described in the next chapter, provide a much easier approach

629

EXAMPLE
C++ By

to changing and removing data. The primary approach to changing

or removing data from a sequential-access file is to create a new one,

from the old one, with the updated data. Because of the updating

ease provided with random-access files, this chapter concentrates

on creating, reading, and adding to sequential files.

Opening and Closing Files
Before you can create, write to, or read from a disk file, you

must open the file. This is analogous to opening a filing cabinet

before working with a file stored in the cabinet. Once you are done

with a cabinet’s file, you close the file drawer. You also must close

a disk file when you finish with it.

When you open a disk file, you only have to inform C++ of the

filename and what you want to do (write to, add to, or read from).

C++ and your operating system work together to make sure the disk

is ready and to create an entry in your file directory (if you are

creating a file) for the filename. When you close a file, C++ writes any

remaining data to the file, releases the file from the program, and

updates the file directory to reflect the file’s new size.

CAUTION: You must ensure that the FILES= statement in your

CONFIG.SYS file is large enough to hold the maximum num-

ber of disk files you have open, with one left for your C++

program. If you are unsure how to do this, check your DOS

reference manual or a beginner’s book about DOS.

To open a file, you must call the open() function. To close a file,

call the close() function. Here is the format of these two function

calls:

file_ptr.open(file_name, access);

and

file_ptr.close();

file_ptr is a special type of pointer that only points to files, not

data variables.

Chapter 30 ♦ Sequential Files

630

Your operating system handles the exact location of your data

in the disk file. You don’t want to worry about the exact track and

sector number of your data on the disk. Therefore, you let file_ptr

point to the data you are reading and writing. Your program only

has to generically manage file_ptr, whereas C++ and your operat-

ing system take care of locating the actual physical data.

file_name is a string (or a character pointer that points to a

string) containing a valid filename for your computer. file_name can

contain a complete disk and directory pathname. You can specify

the filename in uppercase or lowercase letters.

access must be one of the values from Table 30.1.

Table 30.1. Possible access modes.

Mode Description

app Open the file for appending (adding to it).

ate Seek to end of file on opening it.

in Open the file for reading.

out Open the file for writing.

binary Open the file in binary mode.

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails.

noreplace If file exists, open fails unless appending or seeking

to end of file on opening.

The default access mode for file access is a text mode. A text file

is an ASCII file, compatible with most other programming lan-

guages and applications. Text files do not always contain text, in the

word-processing sense of the word. Any data you have to store can

go in a text file. Programs that read ASCII files can read data you

create as C++ text files. For a discussion of binary file access, see the

box that follows.

631

EXAMPLE
C++ By

Binary Modes

If you specify binary access, C++ creates or reads the file in a

binary format. Binary data files are “squeezed”—they take less

space than text files. The disadvantage of using binary files is

that other programs cannot always read the data files. Only

C++ programs written to access binary files can read and write

to them. The advantage of binary files is that you save disk

space because your data files are more compact. Other than the

access mode in the open() function, you use no additional

commands to access binary files with your C++ programs.

The binary format is a system-specific file format. In other

words, not all computers can read a binary file created on

another computer.

If you open a file for writing, C++ creates the file. If a file by

that name already exists, C++ overwrites the old file with

no warning. You must be careful when opening files so you do

not overwrite existing data that you want to save.

If an error occurs during the opening of a file, C++ does not

create a valid file pointer. Instead, C++ creates a file pointer equal to

zero. For example, if you open a file for output, but use a disk name

that is invalid, C++ cannot open the file and makes the file pointer

equal to zero. Always check the file pointer when writing disk file

programs to ensure the file opened properly.

TIP: Beginning programmers like to open all files at the begin-

ning of their programs and close them at the end. This is not

always the best method. Open files immediately before

you access them and close them immediately when you are

done with them. This habit protects the files because they are

closed immediately after you are done with them. A closed file

is more likely to be protected in the unfortunate (but possible)

event of a power failure or computer breakdown.

Chapter 30 ♦ Sequential Files

632

This section contains much information on file-access theories.

The following examples help illustrate these concepts.

Examples

1. Suppose you want to create a file for storing your house

payment records for the previous year. Here are the first few

lines in the program which creates a file called HOUSE.DAT

on your disk:

#include <fstream.h>

main()

{

 ofstream file_ptr; // Declares a file pointer for writing

 file_ptr.open(“house.dat”, ios::out); // Creates the file

The remainder of the program writes data to the file. The

program never has to refer to the filename again. The pro-

gram uses the file_ptr variable to refer to the file. Examples

in the next few sections illustrate how. There is nothing

special about file_ptr, other than its name (although the

name is meaningful in this case). You can name file pointer

variables XYZ or a908973 if you like, but these names would not

be meaningful.

You must include the fstream.h header file because it con-

tains the definition for the ofstream and ifstream declarations.

You don’t have to worry about the physical specifics. The

file_ptr “points” to data in the file as you write it. Put the

declarations in your programs where you declare other

variables and arrays.

TIP: Because files are not part of your program, you might

find it useful to declare file pointers globally. Unlike data in

variables, there is rarely a reason to keep file pointers local.

633

EXAMPLE
C++ By

Before finishing with the program, you should close the file.

The following close() function closes the house file:

file_ptr.close(); // Close the house payment file.

2. If you want, you can put the complete pathname in the file’s

name. The following opens the household payment file in a

subdirectory on the D: disk drive:

file_ptr.open(“d:\mydata\house.dat”, ios::out);

3. If you want, you can store a filename in a character array or

point to it with a character pointer. Each of the following

sections of code is equivalent:

char fn[] = “house.dat”; // Filename in character array.

file_ptr.open(fn, ios::out); // Creates the file.

char *myfile = “house.dat”; // Filename pointed to.

file_ptr.open(myfile, ios::out); // Creates the file.

// Let the user enter the filename.

cout << “What is the name of the household file? “;

gets(filename); // Filename must be an array or

 // character pointer.

file_ptr.open(filename, ios::out); // Creates the file.

No matter how you specify the filename when opening the

file, close the file with the file pointer. This close() function

closes the open file, no matter which method you used to

open the file:

file_ptr.close(); // Close the house payment file.

4. You should check the return value from open() to ensure the

file opened properly. Here is code after open() that checks for

an error:

#include <fstream.h>

main()

{

 ofstream file_ptr; // Declares a file pointer.

Chapter 30 ♦ Sequential Files

634

 file_ptr.open(“house.dat”, ios::out); // Creates the file.

 if (!file_ptr)

 { cout << “Error opening file.\n”; }

 else

 {

 // Rest of output commands go here.

5. You can open and write to several files in the same program.

Suppose you wanted to read data from a payroll file and

create a backup payroll data file. You have to open the

current payroll file using the in reading mode, and the

backup file in the output out mode.

For each open file in your program, you must declare a

different file pointer. The file pointers used by your input

and output statement determine on which file they operate.

If you have to open many files, you can declare an array of

file pointers.

Here is a way you can open the two payroll files:

#include <fstream.h>

ifstream file_in; // Input file

ofstream file_out; // Output file

main()

{

 file_in.open(“payroll.dat”, ios::in); // Existing file

 file_out.open(“payroll.BAK”, ios::out); // New file

When you finish with these files, be sure to close them with

these two close() function calls:

file_in.close();

file_out.close();

635

EXAMPLE
C++ By

Writing to a File
Any input or output function that requires a device performs

input and output with files. You have seen most of these already.

The most common file I/O functions are

get() and put()

gets() and puts()

You also can use file_ptr as you do with cout or cin.

The following function call reads three integers from a file

pointed to by file_ptr:

file_ptr >> num1 >> num2 >> num3; // Reads three variables.

There is always more than one way to write data to a disk file.

Most the time, more than one function will work. For example, if

you write many names to a file, both puts() and file_ptr << work.

You also can write the names using put(). You should use which-

ever function you are most comfortable with. If you want a newline

character (\n) at the end of each line in your file, the file_ptr << and

puts() are probably easier than put(), but all three will do the job.

TIP: Each line in a file is called a record. By putting a newline

character at the end of file records, you make the input of those

records easier.

Examples

1. The following program creates a file called NAMES.DAT.

The program writes five names to a disk file using

file_ptr <<.

// Filename: C30WR1.CPP

// Writes five names to a disk file.

#include <fstream.h>

ofstream fp;

Chapter 30 ♦ Sequential Files

636

void main()

{

 fp.open(“NAMES.DAT”, ios::out); // Creates a new file.

 fp << “Michael Langston\n”;

 fp << “Sally Redding\n”;

 fp << “Jane Kirk\n”;

 fp << “Stacy Wikert\n”;

 fp << “Joe Hiquet\n”;

 fp.close(); // Release the file.

 return;

}

To keep this first example simple, error checking was not

done on the open() function. The next few examples check for

the error.

NAMES.TXT is a text data file. If you want, you can read this

file into your word processor (use your word processor’s

command for reading ASCII files) or use the MS-DOS TYPE

command (or your operating system’s equivalent command)

to display this file on-screen. If you were to display

NAMES.TXT, you would see:

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

2. The following file writes the numbers from 1 to 100 to a file

called NUMS.1.

// Filename: C30WR2.CPP

// Writes 1 to 100 to a disk file.

#include <fstream.h>

ofstream fp;

void main()

637

EXAMPLE
C++ By

{

 int ctr;

 fp.open(“NUMS.1”, ios::out); // Creates a new file.

 if (!fp)

 { cout << “Error opening file.\n”; }

 else

 {

 for (ctr = 1; ctr < 101; ctr++)

 { fp << ctr << “ “; }

 }

 fp.close();

 return;

}

The numbers are not written one per line, but with a space

between each of them. The format of the file_ptr << deter-

mines the format of the output data. When writing data to

disk files, keep in mind that you have to read the data later.

You have to use “mirror-image” input functions to read data

you output to files.

Writing to a Printer
Functions such as open() and others were not designed to write

only to files. They were designed to write to any device, including

files, the screen, and the printer. If you must write data to a printer,

you can treat the printer as if it were a file. The following program

opens a file pointer using the MS-DOS name for a printer located at

LPT1 (the MS-DOS name for the first parallel printer port):

// Filename: C30PRNT.CPP

// Prints to the printer device

#include <fstream.h>

ofstream prnt; // Points to the printer.

void main()

Chapter 30 ♦ Sequential Files

638

{

 prnt.open(“LPT1”, ios::out);

 prnt << “Printer line 1\n”; // 1st line printed.

 prnt << “Printer line 2\n”; // 2nd line printed.

 prnt << “Printer line 3\n”; // 3rd line printed.

 prnt.close();

return;

}

Make sure your printer is on and has paper before you run this

program. When you run the program, you see this printed on the

printer:

Printer line 1

Printer line 2

Printer line 3

Adding to a File
You can easily add data to an existing file or create new files, by

opening the file in append access mode. Data files on the disk are

rarely static; they grow almost daily due to (hopefully!) increased

business. Being able to add to data already on the disk is very useful,

indeed.

Files you open for append access (using ios::app) do not have

to exist. If the file exists, C++ appends data to the end of the file when

you write the data. If the file does not exist, C++ creates the file (as

is done when you open a file for write access).

Example

The following program adds three more names to the

NAMES.DAT file created in an earlier example.

// Filename: C30AP1.CPP

// Adds three names to a disk file.

#include <fstream.h>

639

EXAMPLE
C++ By

ofstream fp;

void main()

{

 fp.open(“NAMES.DAT”, ios::app); // Adds to file.

 fp << “Johnny Smith\n”;

 fp << “Laura Hull\n”;

 fp << “Mark Brown\n”;

 fp.close(); // Release the file.

 return;

}

Here is what the file now looks like:

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

NOTE: If the file does not exist, C++ creates it and stores the

three names to the file.

Basically, you only have to change the open() function’s access

mode to turn a file-creation program into a file-appending program.

Reading from a File
Once the data is in a file, you must be able to read that data. You

must open the file in a read access mode. There are several ways to

read data. You can read character data one character at a time or one

string at a time. The choice depends on the format of the data.

Files you open for read access (using ios::in) must exist al-

ready, or C++ gives you an error. You cannot read a file that does not

exist. open() returns zero if the file does not exist when you open it

for read access.

Files must exist
prior to opening
them for read
access.

Chapter 30 ♦ Sequential Files

640

Another event happens when reading files. Eventually, you

read all the data. Subsequent reading produces errors because there

is no more data to read. C++ provides a solution to the end-of-file

occurrence. If you attempt to read from a file that you have com-

pletely read the data from, C++ returns the value of zero. To find the

end-of-file condition, be sure to check for zero when reading infor-

mation from files.

Examples

1. This program asks the user for a filename and prints the

contents of the file to the screen. If the file does not exist, the

program displays an error message.

// Filename: C30RE1.CPP

// Reads and displays a file.

#include <fstream.h>

#include <stdlib.h>

ifstream fp;

void main()

{

 char filename[12]; // Holds user’s filename.

 char in_char; // Input character.

 cout << “What is the name of the file you want to see? “;

 cin >> filename;

 fp.open(filename, ios::in);

 if (!fp)

 {

 cout << “\n\n*** That file does not exist ***\n”;

 exit(0); // Exit program.

 }

 while (fp.get(in_char))

 { cout << in_char; }

 fp.close();

 return;

}

641

EXAMPLE
C++ By

Here is the resulting output when the NAMES.DAT file is

requested:

What is the name of the file you want to see? NAMES.DAT

Michael Langston

Sally Redding

Jane Kirk

Stacy Wikert

Joe Hiquet

Johnny Smith

Laura Hull

Mark Brown

Because newline characters are in the file at the end of each

name, the names appear on-screen, one per line. If you

attempt to read a file that does not exist, the program dis-

plays the following message:

*** That file does not exist ***

2. This program reads one file and copies it to another. You

might want to use such a program to back up important data

in case the original file is damaged.

The program must open two files, the first for reading, and

the second for writing. The file pointer determines which of

the two files is being accessed.

// Filename: C30RE2.CPP

// Makes a copy of a file.

#include <fstream.h>

#include <stdlib.h>

ifstream in_fp;

ofstream out_fp;

void main()

{

 char in_filename[12]; // Holds original filename.

 char out_filename[12]; // Holds backup filename.

 char in_char; // Input character.

Chapter 30 ♦ Sequential Files

642

 cout << “What is the name of the file you want to back up?

“;

 cin >> in_filename;

 cout << “What is the name of the file “;

 cout << “you want to copy “ << in_filename << “ to? “;

 cin >> out_filename;

 in_fp.open(in_filename, ios::in);

 if (!in_fp)

 {

 cout << “\n\n*** “ << in_filename << “ does not exist

***\n”;

 exit(0); // Exit program

 }

 out_fp.open(out_filename, ios::out);

 if (!out_fp)

 {

 cout << “\n\n*** Error opening “ << in_filename << “

***\n”;

 exit(0); // Exit program

 }

 cout << “\nCopying...\n”; // Waiting message.

 while (in_fp.get(in_char))

 { out_fp.put(in_char); }

 cout << “\nThe file is copied.\n”;

 in_fp.close();

 out_fp.close();

 return;

}

Review Questions
Answers to the review questions are in Appendix B.

1. What are the three ways to access sequential files?

2. What advantage do disk files have over holding data in

memory?

3. How do sequential files differ from random-access files?

643

EXAMPLE
C++ By

4. What happens if you open a file for read access and the file

does not exist?

5. What happens if you open a file for write access and the file

already exists?

6. What happens if you open a file for append access and the

file does not exist?

7. How does C++ inform you that you have reached the end-

of-file condition?

Review Exercises
1. Write a program that creates a file containing the following

data:

Your name

Your address

Your phone number

Your age

2. Write a second program that reads and prints the data file

you created in Exercise 1.

3. Write a program that takes your data created in Exercise 1

and writes it to the screen one word per line.

4. Write a program for PCs that backs up two important files:

the AUTOEXEC.BAT and CONFIG.SYS. Call the backup

files AUTOEXEC.SAV and CONFIG.SAV.

5. Write a program that reads a file and creates a new file with

the same data, except reverse the case on the second file.

Everywhere uppercase letters appear in the first file, write

lowercase letters to the new file, and everywhere lowercase

letters appear in the first file, write uppercase letters to the

new file.

Chapter 30 ♦ Sequential Files

644

Summary
You can now perform one of the most important requirements

of data processing: writing and reading to and from disk files. Before

this chapter, you could only store data in variables. The short life of

variables (they only last as long as your program is running) made

long-term storage of data impossible. You can now save large

amounts of data in disk files to process later.

Reading and writing sequential files involves learning more

concepts than actual commands or functions. The open() and close()

functions are the most important functions you learned in this

chapter. You are now familiar with most of the I/O functions needed

to retrieve data to and from disk files.

The next chapter concludes the discussion of disk files in this

book. You will learn how to create and use random-access files. By

programming with random file access, you can read selected data

from a file, as well as change data without having to rewrite the

entire file.

