Random-Access
Files

This chapter introduces the concept of random file access. Random
file access enables you to read or write any data in your disk file
without having to read or write every piece of data before it. You can
quickly search for, add, retrieve, change, and delete information in
a random-access file. Although you need a few new functions to
access files randomly, you find that the extra effort pays off in
flexibility, power, and speed of disk access.
This chapter introduces

Randome-access files
File records

The seekg() function

* & o o

Special-purpose file 1/0 functions

With C++’s sequential and random-access files, you can do
everything you would ever want to do with disk data.

Chapter 31 ¢ Random-Access Files

Random File Records

Random files exemplify the power of data processing with
C++. Sequential file processing is slow unless you read the entire
file into arrays and process them in memory. As explained in
Chapter 30, however, you have much more disk space than RAM,
and most disk files do not even fit in your RAM at one time.
Therefore, you need a way to quickly read individual pieces of
data from a file in any order and process them one at a time.

Arecord to a file is Generally, you read and write file records. A record to a file is
like ab'f"ucwfe to analogous to a C++ structure. A record is a collection of one or more
varianlies.

data values (called fields) you read and write to disk. Generally, you
store data in structures and write the structures to disk where they
are called records. When you read a record from disk, you generally
read that record into a structure variable and process it with your
program.

Unlike most programming languages, not all disk data for C++
programs has to be stored in record format. Typically, you write a
stream of characters to a disk file and access that data either sequen-
tially or randomly by reading it into variables and structures.

The process of randomly accessing data in a file is simple. Think
about the data files of a large credit card organization. When you
make a purchase, the store calls the credit card company to receive
authorization. Millions of names are in the credit card company’s
files. There is no quick way the credit card company could read
every record sequentially from the disk that comes before yours.
Sequential files do not lend themselves to quick access. It is not
feasible, in many situations, to look up individual records in a data
file with sequential access.

The credit card companies must use a random file access so
their computers can go directly to your record, just as you go directly
to a song on a compact disk or record album. The functions you use
are different from the sequential functions, but the power that
results from learning the added functions is worth the effort.

You do not have to When your program reads and writes files randomly, it treats
rewrite anentire file the file like a big array. With arrays, you know you can add, print,

;"ng‘:s”gfergggom' or remove values in any order. You do not have to start at the first

EXAMPLE

array element, sequentially looking at the next one, until you get the
element you need. You can view your random-access file in the same
way, accessing the data in any order.

Most random file records are fixed-length records. Each record
(usually a row in the file) takes the same amount of disk space.
Most of the sequential files you read and wrote in the previous
chapters were variable-length records. When you are reading or
writing sequentially, there is no need for fixed-length records be-
cause you input each value one character, word, string, or number
at a time, and look for the data you want. With fixed-length records,
your computer can better calculate where on the disk the desired
record is located.

Although you waste some disk space with fixed-length records
(because of the spaces that pad some of the fields), the advantages
of random file access compensate for the “wasted” disk space (when
the data do not actually fill the structure size).

TIP: With random-access files, you can read or write records
in any order. Therefore, even if you want to perform sequential
reading or writing of the file, you can use random-access
processing and “randomly” read or write the file in sequential
record number order.

Opening Random-Access
Files

Just as with sequential files, you must open random-access files
before reading or writing to them. You can use any of the read access
modes mentioned in Chapter 30 (such as ios::in) only to read a file
randomly. However, to modify data in a file, you must open the file
in one of the update modes, repeated for you in Table 31.1.

Chapter 31 ¢ Random-Access Files

Table 31.1. Random-access update modes.

Mode Description

app Open the file for appending (adding to it)

ate Seek to end of file on opening it

in Open file for reading

out Open file for writing

binary Open file in binary mode

trunc Discard contents if file exists

nocreate If file doesn’t exist, open fails

noreplace If file exists, open fails unless appending or seeking to

end of file on opening

There is really no difference between sequential files and
random files in C++. The difference between the files is not physical,
but lies in the method you use to access them and update them.

Examples

1. Suppose you want to write a program to create a file of your
friends’ names. The following open() function call suffices,
1 assuming fp is declared as a file pointer:

fp.open(“NAMES.DAT”, io0s::out);

Frapare if (1fp)
wiking { cout << “\n*** Cannot open file ***\n”; }

No update open() access mode is heeded if you are only
creating the file. However, what if you wanted to create the
file, write names to it, and give the user a chance to change
any of the names before closing the file? You then have to
open the file like this:

fp.open(““NAMES.DAT”, Hos::in | ios::out);

if (1fp)
cout << “\n*** Cannot open file ***\n”;

EXAMPLE

This code enables you to create the file, then change data
you wrote to the file.

2. As with sequential files, the only difference between using a
binary open() access mode and a text mode is that the file
you create is more compact and saves disk space. You
cannot, however, read that file from other programs as an
ASCII text file. The previous open() function can be rewritten
to create and allow updating of a binary file. All other file-
related commands and functions work for binary files just as
they do for text files.

fp.open(“NAMES.DAT”, ios::in | ios::out | ios::binary);

if (1fp)
cout << “\n*** Cannot open file ***\n”’;

The seekg() Function

C++ provides a function that enables you to read to a specific
point in a random-access data file. This is the seekg() function. The
format of seekgQ is

Ffile_ptr._.seekg(long_num, origin);

You can read file_ptr is the pointer to the file that you want to access,
forwards or initialized with an open() statement. 1ong_num is the number of bytes
backwards fromany iy the file you want to skip. C++ does not read this many bytes, but

point in the file with

seekgO). literally skips the data by the number of bytes specified in 1ong_num.

Skipping the bytes on the disk is much faster than reading them. If
long_num iS negative, C++ skips backwards in the file (this allows for
rereading of data several times). Because data files can be large, you
must declare 1ong_num as a long integer to hold a large amount of
bytes.

origin is a value that tells C++ where to begin the skipping of
bytes specified by 1ong_num. origin can be any of the three values
shown in Table 31.2.

Chapter 31 ¢ Random-Access Files

Table 31.2. Possible origin values.

Description origin Equivalent
Beginning of file SEEK_SET ios: :beg
Current file position SEEK_CUR ios::cur
End of file SEEK_END ios::end

The origins SEEK_SET, SEEK_CUR, and SEEK_END are de-
fined in stdio.h. The equivalents ios: :beg, ios::cur, and ios: :end are
defined in fstream.h.

NOTE: Actually, the file pointer plays a much more important
role than simply “pointing to the file” on the disk. The file
pointer continually points to the exact location of the next byte
to read or write. In other words, as you read data from either a
sequential or random-access file, the file pointer increments
with each byte read. By using seekg(), you can move the file
pointer forward or backward in the file.

Examples

5"1 1. No matter how far into a file you have read, the following
seekg() function positions the file pointer back to the begin-
ning of a file:

fp.seekg(OL, SEEK_SET); // Position file pointer at beginning.

The constant oL passes a long integer o to the seekg() func-
tion. Without the L, C++ passes a regular integer and this
does not match the prototype for seekg() that is located in
fstream.h. Chapter 4, “Variables and Literals,” explained the
use of data type suffixes on numeric constants, but the
suffixes have not been used until now.

This seekg() function literally reads “move the file pointer 0
bytes from the beginning of the file.”

EXAMPLE

2. The following example reads a file named MYFILE. TXT
twice, once to send the file to the screen and once to send the
file to the printer. Three file pointers are used, one for each
device (the file, the screen, and the printer).

// Filename: C31TWIC.CPP
// Writes a file to the printer, rereads it,
// and sends it to the screen.

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

ifstream in_file; // Input file pointer.
ofstream scrn; // Screen pointer.
ofstream prnt; // Printer pointer.

void main()

{

char in_char;

in_file.open(“MYFILE.TXT”, i0s::in);
if (Yin_file)

{
cout << “\n*** Error opening MYFILE.TXT ***\n”;
exit(0);

}

scrn.open(“CON”, ios::out); // Open screen device.

while (in_file.get(in_char))
{ scrn << in_char; } // Output characters to the screen.
scrn.close(); // Close screen because it is no
// longer needed.

in_file._seekg(OL, SEEK_SET); // Reposition file pointer.
prnt.open(“LPT1”, ios::out); // Open printer device.
while (in_file.get(in_char))

{ prnt << in_char; } // Output characters to the

// printer.
prnt.close(); // Always close all open files.
in_file.close();
return;

Chapter 31 ¢ Random-Access Files

You also can close then reopen a file to position the file
pointer at the beginning, but using seekg() is a more efficient
method.

Of course, you could have used regular 1/0 functions to
write to the screen, rather than having to open the screen as
a separate device.

3. The following seekg() function positions the file pointer at
the 30th byte in the file. (The next byte read is the 31st byte.)

file_ptr.seekg(30L, SEEK_SET); // Position file pointer
// at the 30th byte.

This seekg() function literally reads “move the file pointer 30
bytes from the beginning of the file.”

If you write structures to a file, you can quickly seek any
structure in the file using the sizeof() function. Suppose you
want the 123rd occurrence of the structure tagged with
inventory. You would search using the following seekg()
function:

file_ptr.seekg((123L * sizeof(struct inventory)), SEEK SET);

4. The following program writes the letters of the alphabet to a
file called ALPH.TXT. The seekg() function is then used to
read and display the ninth and 17th letters (I and Q).

// Filename: C31ALPH.CPP
// Stores the alphabet in a file, then reads
// two letters from it.

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

fstream fp;
void main()

{
char ch; // Holds A through Z.

EXAMPLE

// Open in update mode so you can read file after writing to it.
fp.open(“alph.txt”, ios::in | ios::out);
if (1fp)
{

cout << “\n*** Error opening file ***\n”;

exit(0);
T
for (ch = “A”; ch <= “Z”; ch++)
{ fp << ch; } // Write letters.
fp.seekg(8L, io0s::beg); // SKip eight letters, point to I.
fp >> ch;
cout << “The first character is “ << ch << *“\n”’;
fp.seekg(16L, ios::beg); // Skip 16 letters, point to Q.
fp >> ch;
cout << “The second character is “ << ch << “\n”’;
fp.close();
return;

}

5. To point to the end of a data file, you can use the seekg()
function to position the file pointer at the last byte. Subse-
quent seekg()s should then use a negative 1ong_num value to
skip backwards in the file. The following seekg() function
makes the file pointer point to the end of the file:

file_ptr._seekg(OL, SEEK_END); // Position file
// pointer at the end.

This seekg() function literally reads “move the file pointer 0
bytes from the end of the file.” The file pointer now points to
the end-of-file marker, but you can seekg() backwards to find
other data in the file.

6. The following program reads the ALPH.TXT file (created in
Exercise 4) backwards, printing each character as it skips
back in the file.

// Filename: C31BACK.CPP
// Reads and prints a file backwards.

Chapter 31 ¢ Random-Access Files

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

ifstream fp;
void mainQ)
{
int ctr; // Steps through the 26 letters in the file.

char in_char;

fp.open(“ALPH.TXT”, i0s::in);

if (1fp)

{
cout << “\n*** Error opening file ***\n”;
exit(0);

3

fp.seekg(-1L, SEEK_END); // Point to last byte in

// the file.
for (ctr = 0; ctr < 26; ctr++)
{

fp >> in_char;
fp.seekg(-2L, SEEK_CUR);
cout << in_char;

3

fp.close();

return;

}

This program also uses the seek_cur origin value. The last
seekg() in the program seeks two bytes backwards from the
current position, not the beginning or end as the previous
examples have. The for loop towards the end of the program
performs a “skip-two-bytes-back, read-one-byte-forward”
method to skip through the file backwards.

7. The following program performs the same actions as Ex-
ample 4 (C31ALPH.CPP), with one addition. When the
letters | and Q are found, the letter x is written over the | and
Q. The seekg() must be used to back up one byte in the file to
overwrite the letter just read.

EXAMPLE

// Filename: C31CHANG.CPP
// Stores the alphabet in a file, reads two letters from it,
// and changes those letters to xs.

#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>

fstream fp;

void main()

{
char ch; // Holds A through Z.

// Open in update mode so you can read file after writing to it.
fp.open(“alph.txt”, ios::in | ios::out);
if (1fp)
{
cout << “\n*** Error opening file ***\n”;
exit(0);
}
for (ch = “A”; ch <= “Z7; ch++)
{ fp << ch; } // Write letters
fp.seekg(8L, SEEK_SET); // Skip eight letters, point to I.
fp >> ch;
// Change the Q to an x.
fp.seekg(-1L, SEEK_CUR);
fp << *x7;
cout << “The First character is *“ << ch << “\n”’;
fp.seekg(16L, SEEK_SET); // SKkip 16 letters, point to Q.
fp >> ch;
cout << “The second character is *“ << ch << “\n”’;
// Change the Q to an x.
fp.seekg(-1L, SEEK_CUR);
fp << “x7;
fp.close();
return;

Chapter 31 ¢ Random-Access Files

The file named ALPH.TXT now looks like this:
ABCDEFGHXJKLMNOPXRSTUVWXYZ

This program forms the basis of a more complete data file
management program. After you master the seekg() func-
tions and become more familiar with disk data files, you will
begin to write programs that store more advanced data
structures and access them.

The mailing list application in Appendix F is a good example
of what you can do with random file access. The user is
given a chance to change names and addresses already in
the file. The program, using random access, seeks for and
changes selected data without rewriting the entire disk file.

Other Helpful I/O Functions

There are several more disk 1/0 functions available that you
might find useful. They are mentioned here for completeness. As
you perform more powerful disk 1/0, you might find a use for many
of these functions. Each of these functions is prototyped in the
fstream.h header file.

¢ read(array, count): Reads the data specified by count into the
array or pointer specified by array. read() is called a buffered
I/0 function. read() enables you to read much data with a
single function call.

¢ write(array, count): Writes count array bytes to the specified
file. writeQ) is a buffered 1/0 function. write() enables you to
write much data in a single function call.

¢ remove(filename): Erases the file named by filename. remove()
returns a o if the file was erased successfully and -1 if an
error occurred.

Many of these (and other built-in 1/0 functions that you learn
in your C++ programming career) are helpful functions that you
could duplicate using what you already know.

EXAMPLE

The buffered 170 file functions enable you to read and write
entire arrays (including arrays of structures) to the disk in a single
function call.

Examples

1. The following program requests a filename from the user
and erases the file from the disk using the remove () function.

// Filename: C31ERAS.CPP
// Erases the file specified by the user.

#include <stdio.h>
#include <iostream.h>

void mainQ)

{
char filename[12];
cout << “What is the filename you want me to erase? “;
cin >> filename;
if (remove(filename) == -1)
{ cout << “\n*** | could not remove the file ***\n”; }
else
{ cout << “\nThe file “ << filename << *“ is now removed\n”;}
return;
¥

2. The following function is part of a larger program that
receives inventory data, in an array of structures, from the
user. This function is passed the array name and the number
of elements (structure variables) in the array. The write()
function then writes the complete array of structures to the
disk file pointed to by fp.

void write_str(inventory items[], int inv_cnt)
{
fp.write(items, inv_cnt * sizeof(inventory);
return;

Chapter 31 ¢ Random-Access Files

If the inventory array had 1,000 elements, this one-line
function would still write the entire array to the disk file.
You could use the read() function to read the entire array of
structures from the disk in a single function call.

Review Questions

The answers to the review questions are in Appendix B.
1. What is the difference between records and structures?

2. True or false: You have to create a random-access file before
reading from it randomly.

3. What happens to the file pointer as you read from a file?
4. What are the two buffered file 1/0 functions?
5. What is wrong with this program?

#include <fstream.h>
ifstream Tp;
void mainQ)
{
char in_char;
fp.open(ios::in | 1os::binary);
if (fp.get(in_char))
{ cout << in_char; 3} // Write to the screen
fp.close();
return;

Review Exercises

1. Write a program that asks the user for a list of five names,
then writes the names to a file. Rewind the file and display
] its contents on-screen using the seekg() and get() functions.

EXAMPLE

2. Rewrite the program in Exercise 1 so it displays every other
character in the file of names.

3. Write a program that reads characters from a file. If the input
character is a lowercase letter, change it to uppercase. If the
input character is an uppercase letter, change it to lowercase.
Do not change other characters in the file.

4. Write a program that displays the number of nonalphabetic
characters in afile.

5. Write a grade-keeping program for a teacher. Allow the
teacher to enter up to 10 students’ grades. Each student has
three grades for the semester. Store the students’ names and
their three grades in an array of structures and store the data
on the disk. Make the program menu-driven. Include op-
tions of adding more students, viewing the file’s data, or
printing the grades to the printer with a calculated class
average.

Summary

C++ supports random-access files with several functions. These
functions include error checking, file pointer positioning, and the
opening and closing of files. You now have the tools you need to save
your C++ program data to disk for storage and retrieval.

The mailing-list application in Appendix F offers a complete
example of random-access file manipulation. The program enables
the user to enter names and addresses, store them to disk, edit them,
change them, and print them from the disk file. The mailing-list
program combines almost every topic from this book into a com-
plete application that “puts it all together.”

