
661

EXAMPLE
C++ By

32

Introduction to
Object-Oriented
Programming

The most widely used object-oriented programming language to-

day is C++. C++ provides classes—which are its objects. Classes

really distinguish C++ from C. In fact, before the name C++ was

coined, the C++ language was called “C with classes.”

This chapter attempts to expose you to the world of object-

oriented programming, often called OOP. You will probably not

become a master of OOP in these few short pages, however, you are

ready to begin expanding your C++ knowledge.

This chapter introduces the following concepts:

♦ C++ classes

♦ Member functions

♦ Constructors

♦ Destructors

This chapter concludes your introduction to the C++ language.

After mastering the techniques taught in this book, you will be ready

to modify the mailing list program in Appendix F to suit your own

needs.

Chapter 32 ♦ Introduction to Object-Oriented Programming

662

What Is a Class?
A class is a user-defined data type that resembles a structure. A

class can have data members, but unlike the structures you have

seen thus far, classes can also have member functions. The data

members can be of any type, whether defined by the language or by

you. The member functions can manipulate the data, create and

destroy class variables, and even redefine C++’s operators to act on

the class objects.

Classes have several types of members, but they all fall into two

categories: data members and member functions.

Data Members

Data members can be of any type. Here is a simple class:

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

};

Notice how this class resembles structures you have already

seen, with the exception of the public keyword. The Sphere class has

four data members: r, x, y, and z. In this case, the public keyword

plays an important role; it identifies the class Sphere as a structure.

As a matter of fact, in C++, a public class is physically identical to a

structure. For now, ignore the public keyword; it is explained later

in this chapter.

Member Functions

A class can also have member functions (members of a class that

manipulate data members). This is one of the primary features that

distinguishes a class from a structure. Here is the Sphere class again,

with member functions added:

663

EXAMPLE
C++ By

#include <math.h>

const float PI = 3.14159;

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere() { }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

This Sphere class has four member functions: Sphere(), ~Sphere(),

volume(), and surface_area(). The class is losing its similarity to a

structure. These member functions are very short. (The one with the

strange name of ~Sphere() has no code in it.) If the codes of the

member functions were much longer, only the prototypes would

appear in the class, and the code for the member functions would

follow later in the program.

C++ programmers call class data objects because classes do

more than simply hold data. Classes act on data; in effect, a class is

an object that manipulates itself. All the data you have seen so far in

this book is passive data (data that has been manipulated by code in

the program). Classes’ member functions actually manipulate class

data.

In this example, the class member Sphere() is a special function.

It is a constructor function, and its name must always be the same as

its class. Its primary use is declaring a new instance of the class.

Constructors create
and initialize class
data.

Chapter 32 ♦ Introduction to Object-Oriented Programming

664

Examples

1. The following program uses the Sphere() class to initialize a

class variable (called a class instance) and print it.

// Filename: C32CON.CPP

// Demonstrates use of a class constructor function.

#include <iostream.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

{ x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere() { }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 return;

}

665

EXAMPLE
C++ By

Note: In OOP, the main() function (and all it calls) becomes

smaller because member functions contain the code that ma-

nipulates all class data.

Indeed, this program looks different from those you have

seen so far. This example is your first true exposure to OOP

programming. Here is the output of this program:

X = 1, Y = 2, Z = 3, R = 4

This program illustrates the Sphere() constructor function.

The constructor function is the only member function called

by the program. Notice the ~Sphere() member function

constructed s, and initialized its data members as well.

The other special function is the destructor function,
~Sphere(). Notice that it also has the same name as the class,

but with a tilde (~) as a prefix. The destructor function never

takes arguments, and never returns values. Also notice that

this destructor doesn’t do anything. Most destructors do

very little. If a destructor has no real purpose, you do not
have to specify it. When the class variable goes out of scope,

the memory allocated for that class variable is returned to

the system (in other words, an automatic destruction oc-

curs). Programmers use destructor functions to free memory

occupied by class data in advanced C++ applications.

Similarly, if a constructor doesn’t serve any specific function,

you aren’t required to declare one. C++ allocates memory for

a class variable when you define the class variable, just as it

does for all other variables. As you learn more about C++

programming, especially when you begin using the ad-
vanced concept of dynamic memory allocation, constructors

and destructors become more useful.

2. To illustrate that the ~Sphere() destructor does get called (it

just doesn’t do anything), you can put a cout statement in the

constructor as seen in the next program:

// Filename: C32DES.CPP

// Demonstrates use of a class destructor function.

Destructors erase
class data.

Chapter 32 ♦ Introduction to Object-Oriented Programming

666

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main(void)

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 // Construct a class instance.

 cout << “X = “ << s.x << “, Y = “

 << s.y << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 return;

}

Here is the output of this program:

X = 1, Y = 2, Z = 3, R = 4

Sphere (1, 2, 3, 4) destroyed

667

EXAMPLE
C++ By

Notice that main() did not explicitly call the destructor

function, but ~Sphere() was called automatically when the

class instance went out of scope.

3. The other member functions have been waiting to be used.

The following program uses the volume() and surface_area()

functions:

// Filename: C32MEM.CPP

// Demonstrates use of class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

}; // End of class.

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

Chapter 32 ♦ Introduction to Object-Oriented Programming

668

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “

 << s.surface_area() << “\n”;

}

The volume() and surface_area() functions could have been

made in-line. This means that the compiler embeds the

functions in the code, rather than calling them as functions.

In C32MEM.CPP, there is essentially a separate function that

is called using the data in Sphere(). By making it in-line,

Sphere() essentially becomes a macro and is expanded in the

code.

4. In the following program, volume() has been changed to an

in-line function, creating a more efficient program:

// Filename: C32MEM1.CPP

// Demonstrates use of in-line class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

669

EXAMPLE
C++ By

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

}

The inline functions expand to look like this to the compiler:

// C32MEM1A.CPP

// Demonstrates use of in-line class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

Chapter 32 ♦ Introduction to Object-Oriented Programming

670

The advantage of using in-line functions is that they execute

faster—there’s no function-call overhead involved because

no function is actually called. The disadvantage is that if

your functions are used frequently, your programs become

larger and larger as functions are expanded.

Default Member Arguments
You can also give member functions arguments by default.

Assume by default that the y coordinate of a sphere will be 2.0, the

z coordinate will be 2.5, and the radius will be 1.0. Rewriting the

previous example’s constructor function to do this results in this

code:

Sphere(float xcoord, float ycoord = 2.0, float zcoord = 2.5,

 float radius = 1.0)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

You can create a sphere with the following instructions:

Sphere s(1.0); // Use all default

Sphere t(1.0, 1.1); // Override y coord

Sphere u(1.0, 1.1, 1.2); // Override y and z

Sphere v(1.0, 1.1, 1.2, 1.3); // Override all defaults

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 cout << “The volume is “ << (s.r * s.r * s.r * 4 * PI / 3)

 << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

}

671

EXAMPLE
C++ By

Examples

1. Default arguments are used in the following code.

// Filename: C32DEF.CPP

// Demonstrates use of default arguments in

// class member functions.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere(float xcoord, float ycoord = 2.0,

 float zcoord = 2.5, float radius = 1.0)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0); // use all default

 Sphere t(1.0, 1.1); // override y coord

 Sphere u(1.0, 1.1, 1.2); // override y and z

 Sphere v(1.0, 1.1, 1.2, 1.3); // override all defaults

 cout << “s: X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

Chapter 32 ♦ Introduction to Object-Oriented Programming

672

 cout << “The volume of s is “ << s.volume() << “\n”;

 cout << “The surface area of s is “ << s.surface_area() << “\n”;

 cout << “t: X = “ << t.x << “, Y = “ << t.y

 << “, Z = “ << t.z << “, R = “ << t.r << “\n”;

 cout << “The volume of t is “ << t.volume() << “\n”;

 cout << “The surface area of t is “ << t.surface_area() << “\n”;

 cout << “u: X = “ << u.x << “, Y = “ << u.y

 << “, Z = “ << u.z << “, R = “ << u.r << “\n”;

 cout << “The volume of u is “ << u.volume() << “\n”;

 cout << “The surface area of u is “ << u.surface_area() << “\n”;

 cout << “v: X = “ << v.x << “, Y = “ << v.y

 << “, Z = “ << v.z << “, R = “ << v.r << “\n”;

 cout << “The volume of v is “ << v.volume() << “\n”;

 cout << “The surface area of v is “ << v.surface_area() << “\n”;

 return;

}

Here is the output from this program:

s: X = 1, Y = 2, Z = 2.5, R = 1

The volume of s is 4.188787

The surface area of s is 12.56636

t: X = 1, Y = 1.1, Z = 2.5, R = 1

The volume of t is 4.188787

The surface area of t is 12.56636

u: X = 1, Y = 1.1, Z = 1.2, R = 1

The volume of u is 4.188787

The surface area of u is 12.56636

v: X = 1, Y = 1.1, Z = 1.2, R = 1.3

The volume of v is 9.202764

The surface area of v is 21.237148

Sphere (1, 1.1, 1.2, 1.3) destroyed

Sphere (1, 1.1, 1.2, 1) destroyed

Sphere (1, 1.1, 2.5, 1) destroyed

Sphere (1, 2, 2.5, 1) destroyed

Notice that when you use a default value, you must also use

the other default values to its right. Similarly, once you

define a function’s parameter as having a default value,

every parameter to its right must have a default value as well.

673

EXAMPLE
C++ By

2. You also can call more than one constructor; this is called

overloading the constructor. When having more than one

constructor, all with the same name of the class, you must

give them each a different parameter list so the compiler can

determine which one you intend to use. A common use of

overloaded constructors is to create an uninitialized object

on the receiving end of an assignment, as you see done here:

// C32OVCON.CPP

// Demonstrates use of overloaded constructors.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

public:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 Sphere() { /* doesn’t do anything... */ }

 Sphere(float xcoord, float ycoord,

 float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 inline float volume()

 {

 return (r * r * r * 4 * PI / 3);

 }

 float surface_area()

 {

 return (r * r * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

Chapter 32 ♦ Introduction to Object-Oriented Programming

674

 Sphere t; // No parameters (an uninitialized sphere).

 cout << “X = “ << s.x << “, Y = “ << s.y

 << “, Z = “ << s.z << “, R = “ << s.r << “\n”;

 t = s;

 cout << “The volume of t is “ << t.volume() << “\n”;

 cout << “The surface area of t is “ << t.surface_area()

 << “\n”;

 return;

}

Class Member Visibility
Recall that the Sphere() class had the label public. Declaring the

public label is necessary because, by default, all members of a class

are private. Private members cannot be accessed by anything but a

member function. In order for data or member functions to be used

by other programs, they must be explicitly declared public. In the

case of the Sphere() class, you probably want to hide the actual data

from other classes. This protects the data’s integrity. The next

program adds a cube() and square() function to do some of the work

of the volume() and surface_area() functions. There is no need for

other functions to use those member functions.

// Filename: C32VISIB.CPP

// Demonstrates use of class visibility labels.

#include <iostream.h>

#include <math.h>

const float PI = 3.14159; // Approximate value of pi.

// A sphere class.

class Sphere

{

private:

 float r; // Radius of sphere

 float x, y, z; // Coordinates of sphere

 float cube() { return (r * r * r); }

 float square() { return (r * r); }

675

EXAMPLE
C++ By

public:

 Sphere(float xcoord, float ycoord, float zcoord, float radius)

 { x = xcoord; y = ycoord; z = zcoord; r = radius; }

 ~Sphere()

 {

 cout << “Sphere (“ << x << “, “ << y

 << “, “ << z << “, “ << r << “) destroyed\n”;

 }

 float volume()

 {

 return (cube() * 4 * PI / 3);

 }

 float surface_area()

 {

 return (square() * 4 * PI);

 }

};

void main()

{

 Sphere s(1.0, 2.0, 3.0, 4.0);

 cout << “The volume is “ << s.volume() << “\n”;

 cout << “The surface area is “ << s.surface_area() << “\n”;

 return;

}

Notice that the line showing the data members had to be

removed from main(). The data members are no longer directly

accessible except by a member function of class Sphere. In other

words, main() can never directly manipulate data members such as

r and z, even though it calls the constructor function that created

them. The private member data is only visible in the member

functions. This is the true power of data hiding; even your own code

cannot get to the data! The advantage is that you define specific data-

retrieval, data-display, and data-changing member functions that

main() must call to manipulate member data. Through these member

functions, you set up a buffer between your program and the

program’s data structures. If you change the way the data is stored,

you do not have to change main() or any functions that main() calls.

You only have to change the member functions of that class.

Chapter 32 ♦ Introduction to Object-Oriented Programming

676

Review Questions
The answers to the review questions are in Appendix B.

1. What are the two types of class members called?

2. Is a constructor always necessary?

3. Is a destructor always necessary?

4. What is the default visibility of a class data member?

5. How do you make a class member visible outside its class?

Review Exercise
Construct a class to hold personnel records. Use the following

data members, and keep them private:

char name[25];

float salary;

char date_of_birth[9];

Create two constructors, one to initialize the record with its

necessary values and another to create an uninitialized record.

Create member functions to alter the individual’s name, salary, and

date of birth.

Summary
You have now been introduced to classes, the data type that

distinguishes C++ from its predecessor, C. This was only a cursory

glimpse of object-oriented programming. However, you saw that

OOP offers an advanced view of your data, combining the data with

the member functions that manipulate that data. If you desire to

learn more about C++ and become a “guru” of sorts, try Using
Microsoft C/C++ 7 (Que, 0-88022-809-1).

