
679

EXAMPLE
C++ By

A

Memory
Addressing,
Binary, and
Hexadecimal
Review

You do not have to understand the concepts in this appendix to

become well-versed in C++. You can master C++, however, only if

you spend some time learning about the behind-the-scenes roles

played by binary numbers. The material presented here is not

difficult, but many programmers do not take the time to study it;

hence, there are a handful of C++ masters who learn this material

and understand how C++ works “under the hood,” and there are

those who will never master the language as they could.

You should take the time to learn about addressing, binary

numbers, and hexadecimal numbers. These fundamental principles

are presented here for you to learn, and although a working knowl-

edge of C++ is possible without knowing them, they greatly enhance

your C++ skills (and your skills in every other programming lan-

guage).

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

680

After reading this appendix, you will better understand why

different C++ data types hold different ranges of numbers. You also

will see the importance of being able to represent hexadecimal

numbers in C++, and you will better understand C++ array and

pointer addressing.

Computer Memory
Each memory location inside your computer holds a single

character called a byte. A byte is any character, whether it is a letter

of the alphabet, a numeric digit, or a special character such as a

period, question mark, or even a space (a blank character). If your

computer contains 640K of memory, it can hold a total of approxi-

mately 640,000 bytes of memory. This means that as soon as you fill

your computer’s memory with 640K, there is no room for an addi-

tional character unless you overwrite something.

Before describing the physical layout of your computer’s

memory, it is best to take a detour and explain exactly what 640K

means.

Memory and Disk Measurements

By appending the K (from the metric word kilo) to memory

measurements, the manufacturers of computers do not have to

attach as many zeros to the end of numbers for disk and memory

storage. The K stands for approximately 1000 bytes. As you will see,

almost everything inside your computer is based on a power of 2.

Therefore, the K of computer memory measurements actually equals

the power of 2 closest to 1000, which is 2 to the 10th power, or 1024.

Because 1024 is very close to 1000, computer-users often think of K
as meaning 1000, even though they know it only approximately

equals 1000.

Think for a moment about what 640K exactly equals. Practi-

cally speaking, 640K is about 640,000 bytes. To be exact, however,

640K equals 640 times 1024, or 655,360. This explains why the PC

DOS command CHKDSK returns 655,360 as your total memory

(assuming that you have 640K of RAM) rather than 640,000.

K means approxi-
mately 1000 bytes
and exactly 1024
bytes.

681

EXAMPLE
C++ By

Because extended memory and many disk drives can hold such

a large amount of data, typically several million characters, there is

an additional memory measurement shortcut called M, which stands

for meg, or megabytes. The M is a shortcut for approximately one

million bytes. Therefore, 20M is approximately 20,000,000 charac-

ters, or bytes, of storage. As with K, the M literally stands for

1,048,576 because that is the closest power of 2 (2 to the 20th power)

to one million.

How many bytes of storage is 60 megabytes? It is approxi-

mately 60 million characters, or 62,914,560 characters to be exact.

Memory Addresses

Each memory location in your computer, just as with each

house in your town, has a unique address. A memory address is

simply a sequential number, starting at 0, that labels each memory

location. Figure A.1 shows how your computer memory addresses

are numbered if you have 640K of RAM.

M means
approximately
1,000,000 bytes
and exactly
1,048,576 bytes.

Figure A.1. Memory addresses for a 640K computer.

By using unique addresses, your computer can track memory.

When the computer stores a result of a calculation in memory, it

finds an empty address, or one matching the data area where the

result is to go, and stores the result at that address.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

682

Your C++ programs and data share computer memory with

DOS. DOS must always reside in memory while you operate your

computer. Otherwise, your programs would have no way to access

disks, printers, the screen, or the keyboard. Figure A.2 shows

computer memory being shared by DOS and a C++ program. The

exact amount of memory taken by DOS and a C++ program is

determined by the version of DOS you use, how many DOS extras

(such as device drivers and buffers) your computer uses, and the

 size and needs of your C++ programs and data.

Figure A.2. DOS, your C++ program, and your program’s data share the
same memory.

Bits and Bytes
You now know that a single address of memory might contain

any character, called a byte. You know that your computer holds

many bytes of information, but it does not store those characters in

the same way that humans think of characters. For example, if you

type a letter W on your keyboard while working in your C++ editor,

you see the W on-screen, and you also know that the W is stored in

a memory location at some unique address. Actually, your com-

puter does not store the letter W; it stores electrical impulses that

stand for the letter W.

683

EXAMPLE
C++ By

Electricity, which runs through the components of your com-

puter and makes it understand and execute your programs, can exist

in only two states—on or off. As with a light bulb, electricity is either

flowing (it is on) or it is not flowing (it is off). Even though you can

dim some lights, the electricity is still either on or off.

Today’s modern digital computers employ this on-or-off con-

cept. Your computer is nothing more than millions of on and off

switches. You might have heard about integrated circuits, transis-

tors, and even vacuum tubes that computers have contained over

the years. These electrical components are nothing more than switches

that rapidly turn electrical impulses on and off.

This two-state on and off mode of electricity is called a binary
state of electricity. Computer people use a 1 to represent an on state

(a switch in the computer that is on) and a 0 to represent an off state

(a switch that is off). These numbers, 1 and 0, are called binary digits.
The term binary digits is usually shortened to bits. A bit is either a 1

or a 0 representing an on or an off state of electricity. Different

combinations of bits represent different characters.

Several years ago, someone listed every single character that

might be represented on a computer, including all uppercase letters,

all lowercase letters, the digits 0 through 9, the many other charac-

ters (such as %, *, {, and +), and some special control characters.

When you add the total number of characters that a PC can repre-

sent, you get 256 of them. The 256 ASCII characters are listed in

Appendix C’s ASCII (pronounced ask-ee) table.

The order of the ASCII table’s 256 characters is basically arbi-

trary, just as the telegraph’s Morse code table is arbitrary. With

Morse code, a different set of long and short beeps represent

different letters of the alphabet. In the ASCII table, a different

combination of bits (1s and 0s strung together) represent each of the

256 ASCII characters. The ASCII table is a standard table used by

almost every PC in the world. ASCII stands for American Standard
Code for Information Interchange. (Some minicomputers and main-

frames use a similar table called the EBCDIC table.)

It turns out that if you take every different combination of eight

0s strung together, to eight 1s strung together (that is, from 00000000,

00000001, 00000010, and so on until you get to 11111110, and finally,

11111111), you have a total of 256 of them. (256 is 2 to the 8th power.)

The binary digits 1
and 0 (called bits)
represent on and off
states of electricity.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

684

Each memory location in your computer holds eight bits each. These

bits can be any combination of eight 1s and 0s. This brings us to the

following fundamental rule of computers.

NOTE: Because it takes a combination of eight 1s and 0s to

represent a character, and because each byte of computer

memory can hold exactly one character, eight bits equals one

byte.

To bring this into better perspective, consider that the bit

pattern needed for the uppercase letter A is 01000001. No other

character in the ASCII table “looks” like this to the computer because

each of the 256 characters is assigned a unique bit pattern.

Suppose that you press the A key on your keyboard. Your

keyboard does not send a letter A to the computer; rather, it looks in

its ASCII table for the on and off states of electricity that represent

the letter A. As Figure A.3 shows, when you press the A key, the

keyboard actually sends 01000001 (as on and off impulses) to the

computer. Your computer simply stores this bit pattern for A in a

memory location. Even though you can think of the memory loca-

tion as holding an A, it really holds the byte 01000001.

Figure A.3. Your computer keeps track of characters by their bit
patterns.

Your Keyboard

Computer

Printer

685

EXAMPLE
C++ By

If you were to print that A, your computer would not send an

A to the printer; it would send the 01000001 bit pattern for an A to the

printer. The printer receives that bit pattern, looks up the correct

letter in the ASCII table, and prints an A.
From the time you press the A until the time you see it on the

printer, it is not a letter A! It is the ASCII pattern of bits that the

computer uses to represent an A. Because a computer is electrical,

and because electricity is easily turned on and off, this is a nice way

for the computer to manipulate and move characters, and it can do

so very quickly. Actually, if it were up to the computer, you would

enter everything by its bit pattern, and look at all results in their bit

patterns. Of course, it would be much more difficult for us to learn

to program and use a computer, so devices such as the keyboard,

screen, and printer are created to work part of the time with letters

as we know them. That is why the ASCII table is such an integral

part of a computer.

There are times when your computer treats two bytes as a

single value. Even though memory locations are typically eight bits

wide, many CPUs access memory two bytes at a time. If this is the

case, the two bytes are called a word of memory. On other computers

(commonly mainframes), the word size might be four bytes (32 bits)

or even eight bytes (64 bits).

Summarizing Bits and Bytes

A bit is a 1 or a 0 representing an on or an off state of electricity.

Eight bits represents a byte.

A byte, or eight bits, represents one character.

Each memory location of your computer is eight bits (a single

byte) wide. Therefore, each memory location can hold one

character of data. Appendix C is an ASCII table listing all

possible characters.

If the CPU accesses memory two bytes at a time, those two bytes

are called a word of memory.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

686

The Order of Bits
To further understand memory, you should understand how

programmers refer to individual bits. Figure A.4 shows a byte and

a two-byte word. Notice that the bit on the far right is called bit 0.

From bit 0, keep counting by ones as you move left. For a byte, the

bits are numbered 0 to 7, from right to left. For a double-byte (a 16-

bit word), the bits are numbered from 0 to 15, from right to left.

Figure A.4. The order of bits in a byte and a two-byte word.

Bit 0 is called the least-significant bit, or sometimes the low-order
bit. Bit 7 (or bit 15 for a two-byte word) is called the most-significant
bit, or sometimes the high-order bit.

Binary Numbers
Because a computer works best with 1s and 0s, its internal

numbering method is limited to a base-2 (binary) numbering system.

People work in a base-10 numbering system in the “real” world. The

base-10 numbering system is sometimes called the decimal number-

ing system. There are always as many different digits as the base in

a numbering system. For example, in the base-10 system, there are

ten digits, 0 through 9. As soon as you count to 9 and run out of digits,

you have to combine some that you already used. The number 10 is

a representation of ten values, but it combines the digits 1 and 0.

687

EXAMPLE
C++ By

The same is true of base-2. There are only two digits, 0 and 1.

As soon as you run out of digits, after the second one, you have to

reuse digits. The first seven binary numbers are 0, 1, 10, 11, 100, 101,

and 110.

It is okay if you do not understand how these numbers were

derived; you will see how in a moment. For the time being, you

should realize that no more than two digits, 0 and 1, can be used to

represent any base-2 number, just as no more than ten digits, 0

through 9, can be used to represent any base-10 number in the

regular numbering system.

You should know that a base-10 number, such as 2981, does not

really mean anything by itself. You must assume what base it is. You

get very used to working with base-10 numbers because you use

them every day. However, the number 2981 actually represents a

quantity based on powers of 10. For example, Figure A.5 shows what

the number 2981 actually represents. Notice that each digit in the

number represents a certain number of a power of 10.

Figure A.5. The base-10 breakdown of the number 2981.

This same concept applies when you work in a base-2 number-

ing system. Your computer does this because the power of 2 is just

as common to your computer as the power of 10 is to you. The only

difference is that the digits in a base-2 number represent powers of

2 and not powers of 10. Figure A.6 shows you what the binary

numbers 10101 and 10011110 are in base-10. This is how you convert

any binary number to its base-10 equivalent.

A binary number
can contain only the
digits 1 and 0.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

688

Figure A.6. The base-2 breakdown of the numbers 10101 and
10011110.

A base-2 number contains only 1s and 0s. To convert any base-

2 number to base-10, add each power of 2 everywhere a 1 appears in

the number. The base-2 number 101 represents the base-10 number

5. (There are two 1s in the number, one in the 2 to the 0 power, which

equals 1, and one in the 2 to the second power, which equals 4.) Table

A.1 shows the first 18 base-10 numbers and their matching base-2

numbers.

689

EXAMPLE
C++ By

Table A.1. The first 17 base-10 and base-2 (binary)
numbers.

Base-10 Base-2

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

17 10001

You do not have to memorize this table; you should be able to

figure the base-10 numbers from their matching binary numbers by

adding the powers of two for each 1 (on) bit. Many programmers do

memorize the first several binary numbers because it comes in

handy in advanced programming techniques.

What is the largest binary number a byte can hold? The answer

is all 1s, or 11111111. If you add the first eight powers of 2, you

get 255.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

690

A byte holds either a number or an ASCII character, depending

on how it is accessed. For example, if you were to convert the base-

2 number 01000001 to a base-10 number, you would get 65. How-

ever, this also happens to be the ASCII bit pattern for the uppercase

letter A. If you check the ASCII table, you see that the A is ASCII code

65. Because the ASCII table is so closely linked with the bit patterns,

the computer knows whether to work with a number 65 or a letter

A—by the context of how the patterns are used.

A binary number is not limited to a byte, as an ASCII character

is. Sixteen or 32 bits at a time can represent a binary number (and

usually do). There are more powers of 2 to add when converting that

number to a base-10 number, but the process is the same. By now you

should be able to figure out that 1010101010101010 is 43,690 in base-

10 decimal numbering system (although it might take a little time to

calculate).

To convert from decimal to binary takes a little more effort.

Luckily, you rarely need to convert in that direction. Converting

from base-10 to base-2 is not covered in this appendix.

Binary Arithmetic
At their lowest level, computers can only add and convert

binary numbers to their negative equivalents. Computers cannot

truly subtract, multiply, or divide, although they simulate these

operations through judicious use of the addition and negative-

conversion techniques.

If a computer were to add the numbers 7 and 6, it could do so

(at the binary level). The result is 13. If, however, the computer were

instructed to subtract 7 from 13, it could not do so. It can, however,

take the negative value of 7 and add that to 13. Because –7 plus 13

equals 6, the result is a simulated subtraction.

To multiply, computers perform repeated addition. To multi-

ply 6 by 7, the computer adds seven 6s together and gets 42 as the

answer. To divide 42 by 7, a computer keeps subtracting 7 from 42

repeatedly until it gets to a 0 answer (or less than 0 if there is a

remainder), then counts the number of times it took to reach 0.

691

EXAMPLE
C++ By

Because all math is done at the binary level, the following

additions are possible in binary arithmetic:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Because these are binary numbers, the last result is not the

number 10, but the binary number 2. (Just as the binary 10 means “no

ones, and carry an additional power of 2,” the decimal number 10

means “no ones, and carry a power of 10.”) No binary digit repre-

sents a 2, so you have to combine the 1 and the 0 to form the new

number.

Because binary addition is the foundation of all other math, you

should learn how to add binary numbers. You will then understand

how computers do the rest of their arithmetic.

Using the binary addition rules shown previously, look at the

following binary calculations:

01000001 (65 decimal)

+00101100 (44 decimal)

01101101 (109 decimal)

The first number, 01000001, is 65 decimal. This also happens to

be the bit pattern for the ASCII A, but if you add with it, the computer

interprets it as the number 65 rather than the character A.
The following binary addition requires a carry into bit 4 and

bit 6:

00101011 (43 decimal)

+00100111 (39 decimal)

01010010 (82 decimal)

Typically, you have to ignore bits that carry past bit 7, or bit 15

for double-byte arithmetic. For example, both of the following

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

692

binary additions produce incorrect positive results:

 10000000 (128 decimal) 1000000000000000

 (65536 decimal)

+10000000 (128 decimal) +1000000000000000

 00000000 (0 decimal) (65536 decimal)

 0000000000000000

 (0 decimal)

There is no 9th or 17th bit for the carry, so both of these seem to

produce incorrect results. Because the byte and 16-bit word cannot

hold the answers, the magnitude of both these additions is not

possible. The computer must be programmed, at the bit level, to

perform multiword arithmetic, which is beyond the scope of this book.

Binary Negative Numbers
Because subtracting requires understanding binary negative

numbers, you need to learn how computers represent them. The

computer uses 2’s complement to represent negative numbers in

binary form. To convert a binary number to its 2’s complement (to

its negative) you must:

1. Reverse the bits (the 1s to 0s and the 0s to 1s).

2. Add 1.

This might seem a little strange at first, but it works very well

for binary numbers. To represent a binary –65, you have to take the

binary 65 and convert it to its 2’s complement, such as

 01000001 (65 decimal)

 10111110 (Reverse the bits)

+1 (Add 1)

 10111111 (–65 binary)

Negative binary
numbers are stored
in their 2’s
complement format.

693

EXAMPLE
C++ By

By converting the 65 to its 2’s complement, you produce –65 in

binary. You might wonder what makes 10111111 mean –65, but by

the 2’s complement definition it means –65.

If you were told that 10111111 is a negative number, how

would you know which binary number it is? You perform the 2’s

complement on it. Whatever number you produce is the positive of

that negative number. For example:

10111111 (–65 decimal)

01000000 (Reverse the bits)

 +1 (Add 1)

01000001 (65 decimal)

Something might seem wrong at this point. You just saw that

10111111 is the binary –65, but isn’t 10111111 also 191 decimal

(adding the powers of 2 marked by the 1s in the number, as

explained earlier)? It depends whether the number is a signed or an

unsigned number. If a number is signed, the computer looks at the

most-significant bit (the bit on the far left), called the sign bit. If the

most-significant bit is a 1, the number is negative. If it is 0, the

number is positive.

Most numbers are 16 bits long. That is, two-byte words are used

to store most integers. This is not always the case for all computers,

but it is true for most PCs.

In the C++ programming language, you can designate num-

bers as either signed integers or unsigned integers (they are signed

by default if you do not specify otherwise). If you designate a

variable as a signed integer, the computer interprets the high-order

bit as a sign bit. If the high-order bit is on (1), the number is negative.

If the high-order bit is off (0), the number is positive. If, however, you

designate a variable as an unsigned integer, the computer uses the

high-order bit as just another power of 2. That is why the range of

unsigned integer variables goes higher (generally from 0 to 65535,

but it depends on the computer) than for signed integer variables

(generally from –32768 to +32767).

After so much description, a little review is in order. Assume

that the following 16-bit binary numbers are unsigned:

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

694

0011010110100101

1001100110101010

1000000000000000

These numbers are unsigned, so the bit 15 is not the sign bit, but

simply another power of 2. You should practice converting these

large 16-bit numbers to decimal. The decimal equivalents are

13733

39338

32768

If, on the other hand, these numbers are signed numbers, the

high-order bit (bit 15) indicates the sign. If the sign bit is 0, the

numbers are positive and you convert them to decimal in the usual

manner. If the sign bit is 1, you must convert the numbers to their 2’s

complement to find what they equal. Their decimal equivalents are

+13733

–26198

–32768

To compute the last two binary numbers to their decimal

equivalents, take their 2’s complement and convert it to decimal. Put

a minus sign in front of the result and you find what the original

number represents.

TIP: To make sure that you convert a number to its 2’s com-

plement correctly, you can add the 2’s complement to its

original positive value. If the answer is 0 (ignoring the extra

carry to the left), you know that the 2’s complement number is

correct. This is similar to the concept that decimal opposites,

such as –72 + 72, add up to zero.

695

EXAMPLE
C++ By

Hexadecimal Numbers
All those 1s and 0s get confusing. If it were up to your com-

puter, however, you would enter everything as 1s and 0s! This is

unacceptable to people because we do not like to keep track of all

those 1s and 0s. Therefore, a hexadecimal numbering system (some-

times called hex) was devised. The hexadecimal numbering system

is based on base-16 numbers. As with other bases, there are 16

unique digits in the base-16 numbering system. Here are the first 19

hexadecimal numbers:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12

Because there are only 10 unique digits (0 through 9), the letters

A through F represent the remaining six digits. (Anything could

have been used, but the designers of the hexadecimal numbering

system decided to use the first six letters of the alphabet.)

To understand base-16 numbers, you should know how to

convert them to base-10 so they represent numbers with which

people are familiar. Perform the conversion to base-10 from base-16

the same way you did with base-2, but instead of using powers of 2,

represent each hexadecimal digit with powers of 16. Figure A.7

shows how to convert the number 3C5 to decimal.

Hexadecimal
numbers use 16
unique digits, 0
through F.

Figure A.7. Converting hexadecimal 3C5 to its decimal equivalent.

TIP: There are calculators available that convert numbers

between base-16, base-10, and base-2, and also perform 2’s

complement arithmetic.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

696

You should be able to convert 2B to its decimal 43 equivalent,

and E1 to decimal 225 in the same manner. Table A.2 shows the first

20 decimal, binary, and hexadecimal numbers.

Table A.2. The first 20 base-10, base-2 (binary),
and base-16 (hexadecimal) numbers.

Base-10 Base-2 Base-16

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

697

EXAMPLE
C++ By

Why Learn Hexadecimal?
Because of its close association to the binary numbers your

computer uses, hexadecimal notation is extremely efficient for de-

scribing memory locations and values. It is much easier for you (and

more importantly at this level, for your computer) to convert from

base-16 to base-2 than from base-10 to base-2. Therefore, you some-

times want to represent data at the bit level, but using hexadecimal

notation is easier (and requires less typing) than using binary

numbers.

To convert from hexadecimal to binary, convert each hex digit

to its four-bit binary number. You can use Table A.2 as a guide for

this. For example, the following hexadecimal number

5B75

can be converted to binary by taking each digit and converting it to

four binary numbers. If you need leading zeroes to “pad” the four

digits, use them. The number becomes

0101 1011 0111 0101

It turns out that the binary number 0101101101110101 is exactly

equal to the hexadecimal number 5B75. This is much easier than

converting them both to decimal first.

To convert from binary to hexadecimal, reverse this process. If

you were given the following binary number

1101000011110111111010

you could convert it to hexadecimal by grouping the bits into groups

of four, starting with the bit on the far right. Because there is not an

even number of groups of four, pad the one on the far left with

zeroes. You then have the following:

0011 0100 0011 1101 1111 1010

Now you only have to convert each group of four binary digits

into their hexadecimal number equivalent. You can use Table A.2 to

help. You then get the following base-16 number:

343DFA

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

698

The C++ programming language also supports the base-8 octal
representation of numbers. Because octal numbers are rarely used

with today’s computers, they are not covered in this appendix.

How Binary and Addressing
Relate to C++

The material presented here may seem foreign to many pro-

grammers. The binary and 2’s complement arithmetic reside deep in

your computer, shielded from most programmers (except assem-

bly-language programmers). Understanding this level of your com-

puter, however, makes everything else you learn seem more clear.

Many C++ programmers learn C++ before delving into binary

and hexadecimal representation. For those programmers, much

about the C++ language seems strange, but it could be explained

very easily if they understood the basic concepts.

For example, a signed integer holds a different range of num-

bers than an unsigned integer. You now know that this is because

the sign bit is used in two different ways, depending on whether

the number is designated as signed or unsigned.

The ASCII table (see Appendix C) also should make more sense

to you after this discussion. The ASCII table is an integral part of

your computer. Characters are not actually stored in memory and

variables; rather, their ASCII bit patterns are. That is why C++ can

move easily between characters and integers. The following two

C++ statements are allowed, whereas they probably would not be in

another programming language:

char c = 65; // Places the ASCII letter A in c.

int ci = ‘A’; // Places the number 65 in ci.

The hexadecimal notation also makes much more sense if you

truly understand base-16 numbers. For example, if you see the

following line in a C++ program

char a = ‘\x041’;

699

EXAMPLE
C++ By

you could convert the hex 41 to decimal (65 decimal) if you want to

know what is being assigned. Also, C++ systems programmers find

that they can better interface with assembly-language programs

when they understand the concepts presented in this appendix.

If you gain only a cursory knowledge of this material at this

point, you will be very much ahead of the game when you program

in C++!

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

700

