
701

EXAMPLE
C++ By

B

Answers to
Review Questions

Chapter 1
1. BCPL or Algol

2. True

3. 1980s

4. False. C++’s compact size makes it an excellent program-

ming language for smaller computers.

5. The hard disk

6. A modem

7. b. Input. By moving the mouse, you give cursor-direction

commands to the computer.

8. NumLock

9. UNIX

Appendix B ♦ Answers to Review Questions

702

10. When you turn off the computer, the contents of RAM are

destroyed.

11. True

12. 524,288 bytes (512 times 1,024)

13. Modulate, demodulate

Chapter 2
1. A set of detailed instructions that tells the computer what

to do.

2. Buy one or write it yourself.

3. False

4. The program produces the output.

5. A program editor

6. The .CPP extension

7. You must first plan the program by deciding which steps

you will take to produce the final program.

8. To get the errors out of your program

9. So your programs work with various compilers and com-

puter equipment

10. False. You must compile a program before linking it. Most

compilers link the program automatically.

Chapter 3
1. Two comment markers (//)

2. A holding place for data that can be changed

3. A value that cannot be changed

4. The +, -, *, and / operators

703

EXAMPLE
C++ By

5. The = assignment operator.

6. False. There are floating-point, double floating-point, short

integers, long integers, and many more variable data types.

7. cout

8. city must be a variable name because it is not enclosed in

quotation marks.

9. All C++ commands must be in lowercase.

Chapter 4
1. my_name and sales_89

2. Characters: ‘X’and ‘0’

Strings: “2.0” and “X”

Integers: 0 and -708

Floating-point literals: -12.0 and 65.4

3. Seven variables are declared: three integers, three characters,

and one floating-point variable.

4. A null zero, also called a binary zero or an ASCII zero.

5. True

6. 1

7. It is stored as a series of ASCII values, representing the

characters and blanks in the string, ending in an ASCII 0.

8. It is stored as a single ASCII 0.

9. The constant value called age cannot be changed.

Chapter 5
1. char my_name[] “This is C++”;

2. The string is 11 characters long.

Appendix B ♦ Answers to Review Questions

704

3. It consumes 12 bytes.

4. All string literals end with a binary zero.

5. Two character arrays are declared, each with 25 elements.

6. False. The keyword char must precede the variable name.

7. True. The binary zero terminates the string.

8. False. The characters do not represent a string because there

is no terminating zero.

Chapter 6
1. False. You can define only constants with the #define prepro-

cessor directive.

2. The #include directive

3. The #define directive

4. True

5. The preprocessor changes your source code before the

compiler reads the source code.

6. The const keyword

7. Use angled brackets when the include files reside in the

compiler’s include subdirectory. Use quotation marks when

the include file resides in the same subdirectory as the source

program.

8. Defined literals are easier to change because you have to

change only the line with #define and not several other lines

in the program.

9. iostream.h

10. False. You cannot define constants enclosed in quotation

marks (as “MESSAGE” is in the cout statement).

11. Amount is 4

705

EXAMPLE
C++ By

Chapter 7
1. cout sends output to the screen, and cin gets input from the

keyboard.

2. The prompt tells the user what is expected.

3. The user enters four values.

4. cin assigns values to variables when the user types them,

whereas the programmer must assign data when using the

assignment operator (=).

5. True. When printing strings, you do not need %s.

6. Arrays

7. The backslash “\” character is special

8. The following value prints, with one leading space: 123.456

Chapter 8
1. a. 5

b. 6

c. 5

2. a. 2

b. 7

3. a. a = (3+3) / (4+4);

b. x = (a-b)*((a-c) * (a-c));

c. f = (a*a)/(b*b*b);

d. d = ((8 - x*x)/(x - 9))-((4*2 - 1)/(x*x*x));

4. The area of a circle:

#include stdio.h>

const float PI = 3.14159;

main()

Appendix B ♦ Answers to Review Questions

706

{

 printf(“%f”, (PI*(4*4));

 return;

}

5. Assignment and printf() statements:

r = 100%4;

cout << r;

Chapter 9
1. The == operator

2. a. True

b. True

c. True

d. True

3. True

4. The if statement determines what code executes when the

relational test is true. The if-else statement determines what

happens for both the True and the False relational test.

5. No

6. a. False

b. False

c. False

Chapter 10
1. The &&, ||, and ! operators are the three logical operators.

2. a. False

b. False

707

EXAMPLE
C++ By

c. True

d. True

3. a. True

b. True

c. True

4. g is 25 and f got changed to 8

5. a. True

b. True

c. False

d. True

6. Yes

Chapter 11
1. The if-else statement

2. The conditional operator is the only C++ operator with three

arguments.

3. if (a == b)

 { ans = c + 2; }

else

 { ans = c + 3; }

4. True

5. The increment and decrement operators compile into single

assembly instructions.

6. A comma operator (,), which forces a left-to-right execution

of the statements on either side

7. The output cannot be determined reliably. Do not pass an

increment operator as an argument.

Appendix B ♦ Answers to Review Questions

708

8. The size of name is 20

9. a. True

b. True

c. False

d. False

Chapter 12
1. The while loop tests for a true condition at the beginning of

the loop. The do-while tests for the condition at the end of the

loop.

2. A counter variable increments by one. A total variable

increments by the addition to the total you are performing.

3. The ++ operator

4. If the body of the loop is a single statement, the braces are

not required. However, braces are always recommended.

5. There are no braces. The second cout always executes, re-

gardless of the result of the while loop’s relational test.

6. The stdlib.h header file

7. One time

8. By returning a value inside the exit() function’s parentheses

9. This is the outer loop

This is the outer loop

This is the outer loop

This is the outer loop

709

EXAMPLE
C++ By

Chapter 13
1. A loop is a sequence of one or more instructions executed

repeatedly.

2. False

3. A nested loop is a loop within a loop.

4. Because the expressions might be initialized elsewhere, such

as before the loop or in the body of the loop

5. The inner loop

6. 10

7

4

1

7. True

8. The body of the for loop stops repeating.

9. False, due to the semicolon after the first for loop

10. There is no output. The value of start is already less than end

when the loop begins; therefore, the for loop’s test is imme-

diately False.

Chapter 14
1. Timing loops force a program to pause.

2. Because some computers are faster than others.

3. If the continue and break statements were unconditional,

there would be little use for them.

4. Because of the unconditional continue statement, there is no

output.

5. *****

Appendix B ♦ Answers to Review Questions

710

6. A single variable rarely can hold a large enough value for

the timer’s count.

Chapter 15
1. The program does not execute sequentially, as it would

without goto.

2. The switch statement

3. A break statement

4. False because you should place the case most likely to

execute at the beginning of the case options.

5. switch (num)

{ case (1) : { cout << “Alpha”;

 break; }

 case (2) : { cout << “Beta”;

 break; }

 case (3) : { cout << “Gamma”;

 break; }

 default : { cout << “Other”;

 break; }

}

6. do

 { cout << “What is your first name? “;

 cin >> name;

 } while ((name[0] < ‘A’) || (name[0] > ‘Z’));

Chapter 16
1. True

2. main()

711

EXAMPLE
C++ By

3. Several smaller functions are better because each function

can perform a single task.

4. Function names always end with a pair of parentheses.

5. By putting separating comments between functions.

6. The function sq_25() cannot be nested in calc_it().

7. A function definition (a prototype).

8. True

Chapter 17
1. True

2. Local variables are passed as arguments.

3. False

4. The variable data types

5. Static

6. You should never pass global variables—they do not need to

be passed.

7. Two arguments (the string “The rain has fallen %d inches”,

and the variable, rainf)

Chapter 18
1. Arrays

2. Nonarray variables are always passed by value, unless you

override the default with & before each variable name.

3. True

4. No

5. Yes

Appendix B ♦ Answers to Review Questions

712

6. The data types of variables x, y, and z are not declared in the

receiving parameter list.

7. c

Chapter 19
1. By putting the return type to the left of the function name.

2. One

3. To prototype built-in functions.

4. int

5. False

6. Prototypes ensure that the correct number of parameters is

being passed.

7. Global variables are already known across functions.

8. The return type is float. Three parameters are passed: a

character, an integer, and a floating-point variable.

Chapter 20
1. In the function prototypes.

2. Overloaded functions

3. Overloaded functions

4. False. You can specify multiple default arguments.

5. void my_fun(float x, int i=7, char ch=’A’);

6. False. Overloaded functions must differ in their argument

lists, not only in their return values.

713

EXAMPLE
C++ By

Chapter 21
1. For portability between different computers

2. False. The standard output can be redirected to any device

through the operating system.

3. getch() assumes stdin for the input device.

4. get

5. > and <

6. getche()

7. False. The input from get goes to a buffer as you type it.

8. Enter

9. True

Chapter 22
1. The character-testing functions do not change the character

passed to them.

2. gets() and fgets()

3. floor() rounds down and ceil() rounds up.

4. The function returns 0 (false) because islower(‘s’) returns a 1

(true) and isalpha(1) is 0.

5. PeterParker

6. 8 9

7. True

8. Prog with a null zero at the end.

9. True

Appendix B ♦ Answers to Review Questions

714

Chapter 23
1. False

2. The array subscripts differentiate array elements.

3. C does not initialize arrays for you.

4. 0

5. Yes. All arrays are passed by address because an array name

is nothing more than an address to that array.

6. C++ initializes all types of global variables (and every other

static variable in your program) to zero or null zero.

Chapter 24
1. False

2. From the low numbers floating to the top of the array like

bubbles.

3. Ascending order

4. The name of an array is an address to the starting element of

that array.

5. a. Eagles

b. Rams

c. les

d. E

e. E

f. The statement prints the character string, s.

g. The third letter of “Eagles” (g) prints.

715

EXAMPLE
C++ By

Chapter 25
1. int scores[5][6];

2. char initials[4][10][20]

3. The first subscript represents rows and the last represents

columns.

4. 30 elements

5. a. 2

b. 1

c. 91

d. 8

6. Nested for loops step through multidimensional tables very

easily.

7. a. 78

b. 100

c. 90

Chapter 26
1. a. Integer pointer

b. Character pointer

c. Floating-point pointer

2. “Address of “

3. The * operator

4. pt_sal = &salary;

5. False

6. Yes

7. a. 2313.54

Appendix B ♦ Answers to Review Questions

716

b. 2313.54

c. invalid

d. invalid

8. b

Chapter 27
1. Array names are pointer constants, not pointer variables.

2. 8

3. a, c, and d are equivalent. Parentheses are needed around

iptr+4 and iptr+1 to make b and e valid.

4. You have to move only pointers, not entire strings.

5. a and d

Chapter 28
1. Structures hold groups of more than one value, each of

which can be a different data type.

2. Members

3. At declaration time and at runtime

4. Structures pass by copy.

5. False. Memory is reserved only when structure variables are

declared.

6. Globally

7. Locally

8. 4

717

EXAMPLE
C++ By

Chapter 29
1. True

2. Arrays are easier to manage.

3. a. inventory[32].price = 12.33;

b. inventory[11].part_no[0] = ‘X’;

c. inventory[96] = inventory[62];

4. a. item is not a structure variable.

b. inventory is an array and must have a subscript.

c. inventory is an array and must have a subscript.

Chapter 30
1. Write, append, and read.

2. Disks hold more data than memory.

3. You can access sequential files only in the same order that

they were originally written.

4. An error condition occurs.

5. The old file is overwritten.

6. The file is created.

7. C++ returns an end-of-file condition.

Chapter 31
1. Records are stored in files and structures are stored in

memory.

2. False

3. The file pointer continually updates to point to the next byte

to read.

Appendix B ♦ Answers to Review Questions

718

4. read() and write()

5. The open() function cannot be called without a filename.

Chapter 32
1. Data members and member functions

2. No

3. No

4. Private

5. Declare it with the public keyword.

