
493

EXAMPLE
C++ By

24

Array Processing

C++ provides many ways to access arrays. If you have programmed

in other computer languages, you will find that some of C++’s array

indexing techniques are unique. Arrays in the C++ language are

closely linked with pointers. Chapter 26, “Pointers,” describes the

many ways pointers and arrays interact. Because pointers are so

powerful, and because learning about arrays provides a good foun-

dation for learning about pointers, this chapter attempts to describe

in detail how to reference arrays.

This chapter discusses the different types of array processing.

You learn how to search an array for one or more values, find the

highest and lowest values in an array, and sort an array into

numerical or alphabetical order.

This chapter introduces the following concepts:

♦ Searching arrays

♦ Finding the highest and lowest values in arrays

♦ Sorting arrays

♦ Advanced subscripting with arrays

Many programmers see arrays as a turning point. Gaining an

understanding of array processing makes your programs more

accurate and allows for more powerful programming.

Chapter 24 ♦ Array Processing

494

Searching Arrays
Arrays are one of the primary means by which data is stored in

C++ programs. Many types of programs lend themselves to process-

ing lists (arrays) of data, such as an employee payroll program, a

scientific research of several chemicals, or customer account pro-

cessing. As mentioned in the previous chapter, array data usually is

read from a disk file. Later chapters describe disk file processing. For

now, you should understand how to manipulate arrays so you see

the data exactly the way you want to see it.

Chapter 23, “Introducing Arrays,” showed how to print arrays

in the same order that you entered the data. This is sometimes done,

but it is not always the most appropriate method of looking at data.

For instance, suppose a high school used C++ programs for its

grade reports. Suppose also that the school wanted to see a list of the

top 10 grade-point averages. You could not print the first 10 grade-

point averages in the list of student averages because the top 10

GPAs might not (and probably will not) appear as the first 10 array

elements. Because the GPAs would not be in any sequence, the

program would have to sort the array into numeric order, from high

GPAs to low, or else search the array for the 10 highest GPAs.

You need a method for putting arrays in a specific order. This

is called sorting an array. When you sort an array, you put that array

in a specific order, such as in alphabetical or numerical order. A

dictionary is in sorted order, and so is a phone book.

When you reverse the order of a sort, it is called a descending
sort. For instance, if you wanted to look at a list of all employees in

descending salary order, the highest-paid employees would be

printed first.

Figure 24.1 shows a list of eight numbers in an array called

unsorted. The middle list of numbers is an ascending sorted version

of unsorted. The third list of numbers is a descending version of

unsorted.

Array elements do
not always appear in
the order in which
they are needed.

495

EXAMPLE
C++ By

Figure 24.1. A list of unsorted numbers sorted into an ascending and a
descending order.

Before you learn to sort, it would be helpful to learn how to

search an array for a value. This is a preliminary step in learning to

sort. What if one of those students received a grade change? The

computer must be able to access that specific student’s grade to

change it (without affecting the others). As the next section shows,

programs can search for specific array elements.

NOTE: C++ provides a method for sorting and searching lists

of strings, but you will not understand how to do this until you

learn about pointers, starting in Chapter 26, “Pointers.” The

sorting and searching examples and algorithms presented in

this chapter demonstrate sorting and searching arrays of num-

bers. The same concepts will apply (and will actually be much

more usable for “real-world” applications) when you learn

how to store lists of names in C++.

Chapter 24 ♦ Array Processing

496

Searching for Values
You do not have to know any new commands to search an array

for a value. Basically, the if and for loop statements are all you need.

To search an array for a specific value, look at each element in that

array, and compare it to the if statement to see whether they match.

If they do not, you keep searching down the array. If you run out of

array elements before finding the value, it is not in the array.

You can perform several different kinds of searches. You might

have to find the highest or the lowest value in a list of numbers. This

is informative when you have much data and want to know the

extremes of the data (such as the highest and lowest sales region in

your division). You also can search an array to see whether it

contains a matching value. For example, you can see whether an

item is already in an inventory by searching a part number array for

a match.

The following programs illustrate some of these array-

searching techniques.

Examples

1. To find the highest number in an array, compare each

element with the first one. If you find a higher value, it

becomes the basis for the rest of the array. Continue until

you reach the end of the array and you will have the highest

value, as the following program shows.

Identify the program and include the I/O header file. You want to
find the highest value in an array, so define the array size as a
constant, then initialize the array.

Loop through the array, comparing each element to the highest
value. If an element is higher than the highest value saved, store
the element as the new high value. Print the highest value found in
the array.

// Filename: C24HIGH.CPP

// Finds the highest value in the array.

#include <iostream.h>

const int SIZE = 15;

void main()

You do not have to
sort an array to find
its extreme values.

497

EXAMPLE
C++ By

{

 // Puts some numbers in the array.

 int ara[SIZE]={5,2,7,8,36,4,2,86,11,43,22,12,45,6,85};

 int high_val, ctr;

 high_val = ara[0]; // Initializes with first

 // array element.

 for (ctr=1; ctr<SIZE; ctr++)

 { // Stores current value if it is

 // the higher than the highest.

 if (ara[ctr] > high_val)

 { high_val = ara[ctr]; }

 }

 cout << “The highest number in the list is “

 << high_val << “\n”;

 return;

}

The output of the program is the following:

The highest number in the list is 86.

You have to save the element if and only if it is higher than

the one you are comparing. Finding the smallest number in

an array is just as easy, except that you determine whether

each succeeding array element is less than the lowest value

found so far.

2. The following example expands on the previous one by

finding the highest and the lowest value. First, store the first

array element in both the highest and the lowest variable to

begin the search. This ensures that each element after that

one is tested to see whether it is higher or lower than the

first.

This example also uses the rand() function from Chapter 22,

“Character, String, and Numeric Functions,” to fill the array

with random values from 0 to 99 by applying the modulus

operator (%) and 100 against whatever value rand() produces.

The program prints the entire array before starting the

search for the highest and the lowest.

Chapter 24 ♦ Array Processing

498

// Filename: C24HILO.CPP

// Finds the highest and the lowest value in the array.

#include <iostream.h>

#include <stdlib.h>

const int SIZE = 15;

void main()

{

 int ara[SIZE];

 int high_val, low_val, ctr;

 // Fills array with random numbers from 0 to 99.

 for (ctr=0; ctr<SIZE; ctr++)

 { ara[ctr] = rand() % 100; }

 // Prints the array to the screen.

 cout << “Here are the “ << SIZE << “ random numbers:\n”;

 for (ctr=0; ctr<SIZE; ctr++)

 { cout << ara[ctr] << “\n”; }

 cout << “\n\n”; // Prints a blank line.

 high_val = ara[0]; // Initializes first element to

 // both high and low.

 low_val = ara[0];

 for (ctr=1; ctr<SIZE; ctr++)

 { // Stores current value if it is

 // higher than the highest.

 if (ara[ctr] > high_val)

 { high_val = ara[ctr]; }

 if (ara[ctr] < low_val)

 { low_val = ara[ctr]; }

 }

 cout << “The highest number in the list is “ <<

 high_val << “\n”;

 cout << “The lowest number in the list is “ <<

 low_val << “\n”;

 return;

}

499

EXAMPLE
C++ By

Here is the output from this program:

Here are the 15 random numbers:

46

30

82

90

56

17

95

15

48

26

4

58

71

79

92

The highest number in the list is 95

The lowest number in the list is 4

3. The next program fills an array with part numbers from an

inventory. You must use your imagination, because the

inventory array normally would fill more of the array, be

initialized from a disk file, and be part of a larger set of

arrays that hold descriptions, quantities, costs, selling prices,

and so on. For this example, assignment statements initialize

the array. The important idea from this program is not the

array initialization, but the method for searching the array.

NOTE: If the newly entered part number is already on file, the

program tells the user. Otherwise, the part number is added to

the end of the array.

// Filename: C24SERCH.CPP

// Searches a part number array for the input value. If

Chapter 24 ♦ Array Processing

500

// the entered part number is not in the array, it is

// added. If the part number is in the array, a message

// is printed.

#include <iostream.h>

const int MAX = 100;

void fill_parts(long int parts[MAX]);

void main()

{

 long int search_part; // Holds user request.

 long int parts[MAX];

 int ctr;

 int num_parts=5; // Beginning inventory count.

 fill_parts(parts); // Fills the first five elements.

 do

 {

 cout << “\n\nPlease type a part number...”;

 cout << “(-9999 ends program) “;

 cin >> search_part;

 if (search_part == -9999)

 { break; } // Exits loop if user wants.

 // Scans array to see whether part is in inventory.

 for (ctr=0; ctr<num_parts; ctr++) // Checks each item.

 { if (search_part == parts[ctr]) // If it is in

 // inventory...

 { cout << “\nPart “ << search_part <<

 “ is already in inventory”;

 break;

 }

 else

 { if (ctr == (num_parts-1)) // If not there,

 // adds it.

 { parts[num_parts] = search_part; // Adds to

 // end of array.

 num_parts++;

 cout << search_part <<

 “ was added to inventory\n”;

501

EXAMPLE
C++ By

 break;

 }

 }

 }

 } while (search_part != -9999); // Loops until user

 // signals end.

 return;

}

void fill_parts(long int parts[MAX])

{

 // Assigns five part numbers to array for testing.

 parts[0] = 12345;

 parts[1] = 24724;

 parts[2] = 54154;

 parts[3] = 73496;

 parts[4] = 83925;

 return;

}

Here is the output from this program:

Please type a part number...(-9999 ends program) 34234

34234 was added to inventory

Please type a part number...(-9999 ends program) 83925

Part 83925 is already in inventory

Please type a part number...(-9999 ends program) 52786

52786 was added to inventory

Please type a part number...(-9999 ends program) -9999

Sorting Arrays
There are many times when you must sort one or more arrays.

Suppose you were to take a list of numbers, write each number on

a separate piece of paper, and throw all the pieces of paper into the

air. The steps you take—shuffling and changing the order of the

Chapter 24 ♦ Array Processing

502

pieces of paper and trying to put them in order—are similar to what

your computer goes through to sort numbers or character data.

Because sorting arrays requires exchanging values of elements

back and forth, it helps if you first learn the technique for swapping

variables. Suppose you had two variables named score1 and score2.

What if you wanted to reverse their values (putting score2 into the

score1 variable, and vice versa)? You could not do this:

score1 = score2; // Does not swap the two values.

score2 = score1;

Why doesn’t this work? In the first line, the value of score1 is

replaced with score2’s value. When the first line finishes, both score1

and score2 contain the same value. Therefore, the second line cannot

work as desired.

To swap two variables, you have to use a third variable to hold

the intermediate result. (This is the only function of this third

variable.) For instance, to swap score1 and score2, use a third variable

(called hold_score in this code), as in

hold_score = score1; // These three lines properly

score1 = score2; // swap score1 and score2.

score2 = hold_score;

This exchanges the values in the two variables.

There are several different ways to sort arrays. These methods

include the bubble sort, the quicksort, and the shell sort. The basic goal

of each method is to compare each array element to another array

element and swap them if the higher value is less than the other.

The theory behind these sorts is beyond the scope of this book,

however, the bubble sort is one of the easiest to understand. Values

in the array are compared to each other, a pair at a time, and

swapped if they are not in back-to-back order. The lowest value

eventually “floats” to the top of the array, like a bubble in a glass of

soda.

Figure 24.2 shows a list of numbers before, during, and after a

bubble sort. The bubble sort steps through the array and compares

pairs of numbers to determine whether they have to be swapped.

Several passes might have to be made through the array before it is

The lowest values in
a list “float” to the
top with the bubble
sort algorithm.

503

EXAMPLE
C++ By

finally sorted (no more passes are needed). Other types of sorts

improve on the bubble sort. The bubble sort procedure is easy to

program, but it is slower compared to many of the other methods.

Figure 24.2. Sorting a list of numbers using the bubble sort.

Chapter 24 ♦ Array Processing

504

The following programs show the bubble sort in action.

Examples

1. The following program assigns 10 random numbers between

0 and 99 to an array, then sorts the array. A nested for loop is

perfect for sorting numbers in the array (as shown in the

sort_array() function). Nested for loops provide a nice mech-

anism for working on pairs of values, swapping them if

needed. As the outside loop counts down the list, referenc-

ing each element, the inside loop compares each of the

remaining values to those array elements.

// Filename: C24SORT1.CPP

// Sorts and prints a list of numbers.

const int MAX = 10;

#include <iostream.h>

#include <stdlib.h>

void fill_array(int ara[MAX]);

void print_array(int ara[MAX]);

void sort_array(int ara[MAX]);

void main()

{

 int ara[MAX];

 fill_array(ara); // Puts random numbers in the array.

 cout << “Here are the unsorted numbers:\n”;

 print_array(ara); // Prints the unsorted array.

 sort_array(ara); // Sorts the array.

 cout << “\n\nHere are the sorted numbers:\n”;

 print_array(ara); // Prints the newly sorted array.

 return;

}

void fill_array(int ara[MAX])

{

505

EXAMPLE
C++ By

 // Puts random numbers in the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { ara[ctr] = (rand() % 100); } // Forces number to

 // 0-99 range.

 return;

}

void print_array(int ara[MAX])

{

 // Prints the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { cout << ara[ctr] << “\n”; }

 return;

}

void sort_array(int ara[MAX])

{

 // Sorts the array.

 int temp; // Temporary variable to swap with

 int ctr1, ctr2; // Need two loop counters to

 // swap pairs of numbers.

 for (ctr1=0; ctr1<(MAX-1); ctr1++)

 { for (ctr2=(ctr1+1); ctr2<MAX; ctr2++) // Test pairs.

 { if (ara[ctr1] > ara[ctr2]) // Swap if this

 { temp = ara[ctr1]; // pair is not in order.

 ara[ctr1] = ara[ctr2];

 ara[ctr2] = temp; // “Float” the lowest

 // to the highest.

 }

 }

 }

 return;

}

The output from this program appears next. If any two ran-

domly generated numbers were the same, the bubble sort

would work properly, placing them next to each other in the

list.

Chapter 24 ♦ Array Processing

506

Here are the unsorted numbers:

46

30

82

90

56

17

95

15

48

26

Here are the sorted numbers:

15

17

26

30

46

48

56

82

90

95

2. The following program is just like the previous one, except it

prints the list of numbers in descending order.

A descending sort is as easy to write as an ascending sort.

With the ascending sort (from low to high values), you

compare pairs of values, testing to see whether the first is

greater than the second. With a descending sort, you test to

see whether the first is less than the second one.

// Filename: C24SORT2.CPP

// Sorts and prints a list of numbers in reverse

// and descending order.

const int MAX = 10;

#include <iostream.h>

#include <stdlib.h>

void fill_array(int ara[MAX]);

To produce a
descending sort, use
the less-than (<)
logical operator
when swapping array
elements.

507

EXAMPLE
C++ By

void print_array(int ara[MAX]);

void sort_array(int ara[MAX]);

void main()

{

 int ara[MAX];

 fill_array(ara); // Puts random numbers in the array.

 cout << “Here are the unsorted numbers:\n”;

 print_array(ara); // Prints the unsorted array.

 sort_array(ara); // Sorts the array.

 cout << “\n\nHere are the sorted numbers:\n”;

 print_array(ara); // Prints the newly sorted array.

 return;

}

void fill_array(int ara[MAX])

{

 // Puts random numbers in the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { ara[ctr] = (rand() % 100); } // Forces number

 // to 0-99 range.

 return;

}

void print_array(int ara[MAX])

{

 // Prints the array

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { cout << ara[ctr] << “\n”; }

 return;

}

void sort_array(int ara[MAX])

{

 // Sorts the array.

 int temp; // Temporary variable to swap with.

Chapter 24 ♦ Array Processing

508

 int ctr1, ctr2; // Need two loop counters

 // to swap pairs of numbers.

 for (ctr1=0; ctr1<(MAX-1); ctr1++)

 { for (ctr2=(ctr1+1); ctr2<MAX; ctr2++) // Test pairs

 // Notice the difference in descending (here)

 // and ascending.

 { if (ara[ctr1] < ara[ctr2]) // Swap if this

 { temp = ara[ctr1]; // pair is not in order.

 ara[ctr1] = ara[ctr2];

 ara[ctr2] = temp; // “Float” the lowest

 // to the highest.

 }

 }

 }

 return;

}

TIP: You can save the previous programs’ sort functions in two

separate files named sort_ascend and sort_descend. When you

must sort two different arrays, #include these files inside your

own programs. Even better, compile each of these routines

separately and link the one you need to your program. (You

must check your compiler’s manual to learn how to do this.)

You can sort character arrays just as easily as you sort numeric

arrays. C++ uses the ASCII character set for its sorting comparisons.

If you look at the ASCII table in Appendix C, you will see that

numbers sort before letters and that uppercase letters sort before

lowercase letters.

Advanced Referencing
of Arrays

The array notation you have seen so far is common in computer

programming languages. Most languages use subscripts inside

brackets (or parentheses) to refer to individual array elements. For

instance, you know the following array references describe the first

509

EXAMPLE
C++ By

and fifth element of the array called sales (remember that the

starting subscript is always 0):

sales[0]

sales[4]

C++ provides another approach to referencing arrays. Even

though the title of this section includes the word “advanced,” this

array-referencing method is not difficult. It is very different, how-

ever, especially if you are familiar with another programming

language’s approach.

There is nothing wrong with referring to array elements in the

manner you have seen so far, however, the second approach, unique

to C and C++, will be helpful when you learn about pointers in

upcoming chapters. Actually, C++ programmers who have pro-

grammed for several years rarely use the subscript notation you

have seen.

In C++, an array’s name is not just a label for you to use in

programs. To C++, the array name is the actual address where the

first element begins in memory. Suppose you define an array called

amounts with the following statement:

int amounts[6] = {4, 1, 3, 7, 9, 2};

Figure 24.3 shows how this array is stored in memory. The

figure shows the array beginning at address 405,332. (The actual

addresses of variables are determined by the computer when you

load and run your compiled program.) Notice that the name of the

array, amounts, is located somewhere in memory and contains the

address of amounts[0], or 405,332.

You can refer to an array by its regular subscript notation, or by

modifying the address of the array. The following refer to the third

element of amounts:

amounts[3] and (amounts + 3)[0]

Because C++ considers the array name to be an address in

memory that contains the location of the first array element, nothing

keeps you from using a different address as the starting address and

referencing from there. Taking this one step further, each of the

following also refers to the third element of amounts:

An array name is
the address of the
starting element of
the array.

Chapter 24 ♦ Array Processing

510

(amounts+0)[3] and (amounts+2)[1] and (amounts-2)[5]

(1+amounts)[2] and (3+amounts)[0] and (amounts+1)[2]

You can print any of these array elements with cout.

Figure 24.3. The array name amounts holds the address of amounts[0].

When you print strings inside character arrays, referencing the

arrays by their modified addresses is more useful than with integers.

Suppose you stored three strings in a single character array. You

could initialize this array with the following statement:

char names[]={‘T’,’e’,’d’,’\0',’E’,’v’,’a’,’\0',’S’,‘a’,’m’,’\0'};

Figure 24.4 shows how this array might look in memory. The

array name, names, contains the address of the first element, names[0]

(the letter T).

511

EXAMPLE
C++ By

CAUTION: The hierarchy table in Appendix D, “C++ Prece-

dence Table,” shows that array subscripts have precedence

over addition and subtraction. Therefore, you must enclose

array names in parentheses if you want to modify the name as

shown in these examples. The following are not equivalent:

(2+amounts)[1] and 2+amounts[1]

The first example refers to amounts[3] (which is 7). The second

example takes the value of amounts[1] (which is 1 in this ex-

ample array) and adds 2 to it (resulting in a value of 3).

This second method of array referencing might seem like more

trouble than it is worth, but learning to reference arrays in this

fashion will make your transition to pointers much easier. An

array name is actually a pointer, because the array contains the

address of the first array element (it “points” to the start of the

array).

Figure 24.4. Storing more than one string in a single character array.

Chapter 24 ♦ Array Processing

512

You have yet to see a character array that holds more than one

string, but C++ allows it. The problem with such an array is how

you reference, and especially how you print, the second and third

strings. If you were to print this array using cout:

cout << names;

C++ would print the following:

Ted

Because cout requires a starting address, you can print the three

strings with the following couts:

cout << names; // Prints Ted

cout << (names+4); // Prints Eva

cout << (names+8); // Prints Sam

To test your understanding, what do the following couts print?

cout << (names+1);

cout << (names+6);

The first cout prints ed. The characters ed begin at (names+1) and

the cout stops printing when it reaches the null zero. The second cout

prints a. Adding six to the address at names produces the address

where the a is located. The “string” is only one character long

because the null zero appears in the array immediately after the a.

To sum up character arrays, the following refer to individual

array elements (single characters):

names[2] and (names+1)[1]

The following refer to addresses only, and as such, you can print the

full strings with cout:

names and (names+4)

CAUTION: Never use the printf()’s %c control code to print an

address reference, even if that address contains a character.

Print strings by specifying an address with %s, and single

characters by specifying the character element with %c.

cout prints strings
in arrays starting at
the array’s address
and continuing until
it reaches the null
zero.

513

EXAMPLE
C++ By

The following examples are a little different from most you

have seen. They do not perform “real-world” work, but were

designed as study examples for you to familiarize yourself with this

new method of array referencing. The next few chapters expand on

these methods.

Examples

1. The following program stores the numbers from 100 to 600

in an array, then prints elements using the new method of

array subscripting.

// Filename: C24REF1.CPP

// Print elements of an integer array in different ways.

#include <iostream.h>

void main()

{

 int num[6] = {100, 200, 300, 400, 500, 600};

 cout << “num[0] is \t” << num[0] << “\n”;

 cout << “(num+0)[0] is \t” << (num+0)[0] << “\n”;

 cout << “(num-2)[2] is \t” << (num-2)[2] << “\n\n”;

 cout << “num[1] is \t” << num[1] << “\n”;

 cout << “(num+1)[0] is \t” << (num+1)[0] << “\n\n”;

 cout << “num[5] is \t” << num[5] << “\n”;

 cout << “(num+5)[0] is \t” << (num+5)[0] << “\n”;

 cout << “(num+2)[3] is \t” << (num+2)[3] << “\n\n”;

 cout << “(3+num)[1] is \t” << (3+num)[1] << “\n”;

 cout << “3+num[1] is \t” << 3+num[1] << “\n”;

 return;

}

Here is the output of this program:

num[0] is 100

(num+0)[0] is 100

(num-2)[2] is 100

Chapter 24 ♦ Array Processing

514

num[1] is 200

(num+1)[0] is 200

num[5] is 600

(num+5)[0] is 600

(num+2)[3] is 600

(3+num)[1] is 500

3+num[1] is 203

2. The following program prints strings and characters from a

character array. The couts all print properly.

// Filename: C24REF2.CPP

// Prints elements and strings from an array.

#include <iostream.h>

void main()

{

 char names[]={‘T’,’e’,’d’,’\0',’E’,’v’,’a’,’\0',

 ’S’, ‘a’,’m’,’\0'};

 // Must use extra percent (%) to print %s and %c.

 cout << “names “ << names << “\n”;

 cout << “names+0 “ << names+0 << “\n”;

 cout << “names+1 “ << names+1 << “\n”;

 cout << “names+2 “ << names+2 << “\n”;

 cout << “names+3 “ << names+3 << “\n”;

 cout << “names+5 “ << names+5 << “\n”;

 cout << “names+8 “ << names+8 << “\n\n”;

 cout << “(names+0)[0] “ << (names+0)[0] << “\n”;

 cout << “(names+0)[1] “ << (names+0)[1] << “\n”;

 cout << “(names+0)[2] “ << (names+0)[2] << “\n”;

 cout << “(names+0)[3] “ << (names+0)[3] << “\n”;

 cout << “(names+0)[4] “ << (names+0)[4] << “\n”;

 cout << “(names+0)[5] “ << (names+0)[5] << “\n\n”;

 cout << “(names+2)[0] “ << (names+2)[0] << “\n”;

 cout << “(names+2)[1] “ << (names+2)[1] << “\n”;

 cout << “(names+1)[4] “ << (names+1)[4] << “\n\n”;

 return;

}

515

EXAMPLE
C++ By

Study the output shown below by comparing it to the pro-

gram. You will learn more about strings, characters, and

character array referencing from studying this one example

than from 20 pages of textual description.

names Ted

names+0 Ted

names+1 ed

names+2 d

names+3

names+5 va

names+8 Sam

(names+0)[0] T

(names+0)[1] e

(names+0)[2] d

(names+0)[3]

(names+0)[4] E

(names+0)[5] v

(names+2)[0] d

(names+2)[1]

(names+1)[4] v

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: You must access an array in the same order

you initialized it.

2. Where did the bubble sort get its name?

3. Are the following values sorted in ascending or descending

order?

33 55 78 78 90 102 435 859

976 4092

4. How does C++ use the name of an array?

Chapter 24 ♦ Array Processing

516

5. Given the following array definition:

char teams[] = {‘E’,’a’,’g’,’l’,’e’,’s’,’\0',

 ’R’, ‘a’,’m’,’s’,’\0'};

What is printed with each of these statements? (Answer

“invalid” if the cout is illegal.)

a. cout << teams;

b. cout << teams+7;

c. cout << (teams+3);

d. cout << teams[0];

e. cout << (teams+0)[0];

f. cout << (teams+5);

Review Exercises
1. Write a program to store six of your friends’ ages in a single

array. Assign the ages in random order. Print the ages, from

low to high, on-screen.

2. Modify the program in Exercise 1 to print the ages in de-

scending order.

3. Using the new approach of subscripting arrays, rewrite the

programs in Exercises 1 and 2. Always put a 0 in the sub-

script brackets, modifying the address instead (use

(ages+3)[0] rather than ages[3]).

4. Sometimes parallel arrays are used in programs that must

track more than one list of values that are related. For in-

stance, suppose you had to maintain an inventory, tracking

the integer part numbers, prices, and quantities of each item.

This would require three arrays: an integer part number

array, a floating-point price array, and an integer quantity

array. Each array would have the same number of elements

(the total number of parts in the inventory). Write a program

to maintain such an inventory, and reserve enough elements

517

EXAMPLE
C++ By

for 100 parts in the inventory. Present the user with an input

screen. When the user enters a part number, search the part

number array. When you locate the position of the part,

print the corresponding price and quantity. If the part does

not exist, enable the user to add it to the inventory, along

with the matching price and quantity.

Summary
You are beginning to see the true power of programming

languages. Arrays give you the ability to search and sort lists of

values. Sorting and searching are what computers do best; comput-

ers can quickly scan through hundreds and even thousands of

values, looking for a match. Scanning through files of paper by hand,

looking for just the right number, takes much more time. By step-

ping through arrays, your program can quickly scan, print, sort, and

calculate a list of values. You now have the tools to sort lists of

numbers, as well as search for values in a list.

You will use the concepts learned here for sorting and search-

ing lists of character string data as well, when you learn a little more

about the way C++ manipulates strings and pointers. To help build

a solid foundation for this and more advanced material, you now

know how to reference array elements without using conventional

subscripts.

Now that you have mastered this chapter, the next one will be

easy. Chapter 25, “Multidimensional Arrays,” shows you how you

can keep track of arrays in a different format called a matrix. Not all

lists of data lend themselves to matrices, but you should be prepared

for when you need them.

Chapter 24 ♦ Array Processing

518

