
519

EXAMPLE
C++ By

25

Multidimensional
Arrays

Some data fits in lists, such as the data discussed in the previous two

chapters, and other data is better suited for tables of information.

This chapter takes arrays one step further. The previous chapters

introduced single-dimensional arrays; arrays that have only one

subscript and represent lists of values.

This chapter introduces arrays of more than one dimension,

called multidimensional arrays. Multidimensional arrays, sometimes

called tables or matrices, have at least two dimensions (rows and

columns). Many times they have more than two.

This chapter introduces the following concepts:

♦ Multidimensional arrays

♦ Reserving storage for multidimensional arrays

♦ Putting data in multidimensional arrays

♦ Using nested for loops to process multidimensional arrays

If you understand single-dimensional arrays, you should have

no trouble understanding arrays that have more than one dimen-

sion.

Chapter 25 ♦ Multidimensional Arrays

520

Multidimensional Array
Basics

A multidimensional array is an array with more than one

subscript. Whereas a single-dimensional array is a list of values, a

multidimensional array simulates a table of values, or multiple

tables of values. The most commonly used table is a two-

dimensional table (an array with two subscripts).

Suppose a softball team wanted to keep track of its players’

batting records. The team played 10 games, and there are 15 players

on the team. Table 25.1 shows the team’s batting record.

Table 25.1. A softball team’s batting record.

Player Game
Name 1 2 3 4 5 6 7 8 9 10

Adams 2 1 0 0 2 3 3 1 1 2

Berryhill 1 0 3 2 5 1 2 2 1 0

Downing 1 0 2 1 0 0 0 0 2 0

Edwards 0 3 6 4 6 4 5 3 6 3

Franks 2 2 3 2 1 0 2 3 1 0

Grady 1 3 2 0 1 5 2 1 2 1

Howard 3 1 1 1 2 0 1 0 4 3

Jones 2 2 1 2 4 1 0 7 1 0

Martin 5 4 5 1 1 0 2 4 1 5

Powers 2 2 3 1 0 2 1 3 1 2

Smith 1 1 2 1 3 4 1 0 3 2

Smithtown 1 0 1 2 1 0 3 4 1 2

Townsend 0 0 0 0 0 0 1 0 0 0

Ulmer 2 2 2 2 2 1 1 3 1 3

Williams 2 3 1 0 1 2 1 2 0 3

A multidimensional
array has more than
one subscript.

521

EXAMPLE
C++ By

Do you see that the softball table is a two-dimensional table? It

has rows (the first dimension) and columns (the second dimension).

Therefore, this is called a two-dimensional table with 15 rows and 10

columns. (Generally, the number of rows is specified first.)

Each row has a player’s name, and each column has a game

number associated with it, but these are not part of the actual data.

The data consists of only 150 values (15 rows by 10 columns). The

data in a two-dimensional table always is the same type of data; in

this case, every value is an integer. If it were a table of salaries, every

element would be a floating-point decimal.

The number of dimensions, in this case two, corresponds to the

dimensions in the physical world. The single-dimensioned array is

a line, or list of values. Two dimensions represent both length and

width. You write on a piece of paper in two dimensions; two

dimensions represent a flat surface. Three dimensions represent

width, length, and depth. You have seen 3-D movies. Not only do the

images have width and height, but they also seem to have depth.

Figure 25.1 shows what a three-dimensional array looks like if it has

a depth of four, six rows, and three columns. Notice that a three-

dimensional table resembles a cube.

It is difficult to visualize more than three dimensions. How-

ever, you can think of each dimension after three as another occur-

rence. In other words, a list of one player’s season batting record can

be stored in an array. The team’s batting record (as shown in Table

25.1) is two-dimensional. The league, made of up several teams’

batting records, represents a three-dimensional table. Each team

(the depth of the table) has rows and columns of batting data. If there

is more than one league, it is another dimension (another set of data).

C++ enables you to store several dimensions, although “real-

world” data rarely requires more than two or three.

A three-dimensional
table has three
dimensions: depth,
rows, and columns.

Chapter 25 ♦ Multidimensional Arrays

522

Figure 25.1. Representing a three-dimensional table (a cube).

Reserving Multidimensional
Arrays

When you reserve a multidimensional array, you must inform

C++ that the array has more than one dimension by putting more

than one subscript in brackets after the array name. You must put a

separate number, in brackets, for each dimension in the table. For

example, to reserve the team data from Table 25.1, you use the

following multidimensional array declaration.

3 columns

4 deep

6 rows

523

EXAMPLE
C++ By

Declare an integer array called teams with 15 rows and 10 columns.

int teams[15][10]; // Reserves a two-dimensional table.

CAUTION: Unlike other programming languages, C++ re-

quires you to enclose each dimension in brackets. Do not

reserve multidimensional array storage like this:

int teams[15,10]; // Invalid table declaration.

Properly reserving the teams table produces a table with 150

elements. Figure 25.2 shows what each element’s subscript looks

like.

columns

Figure 25.2. Subscripts for the softball team table.

rows

Chapter 25 ♦ Multidimensional Arrays

524

If you had to track three teams, each with 15 players and 10

games, the three-dimensional table would be created as follows:

int teams[3][15][10]; // Reserves a three-dimensional table.

When creating a two-dimensional table, always put the maxi-

mum number of rows first, and the maximum number of columns

second. C++ always uses 0 as the starting subscript of each dimen-

sion. The last element, the lower-right element of the teams table, is

teams[2][14][9].

Examples

1. Suppose you wanted to keep track of utility bills for the

year. You can store 12 months of four utilities in a two-

dimensional table of floating-point amounts, as the follow-

ing array declaration demonstrates:

float utilities[12][4]; // Reserves 48 elements.

You can compute the total number of elements in a multi-

dimensional array by multiplying the subscripts. Because

12 times 4 is 48, there are 48 elements in this array (12 rows,

4 columns). Each of these elements is a floating-point data

type.

2. If you were keeping track of five years’ worth of utilities,

you have to add an extra dimension. The first dimension is

the years, the second is the months, and the last is the indi-

vidual utilities. Here is how you reserve storage:

float utilities[5][12][4]; // Reserves 240 elements.

Mapping Arrays to Memory
C++ approaches multidimensional arrays a little differently

than most programming languages do. When you use subscripts,

you do not have to understand the internal representation of multi-

dimensional arrays. However, most C++ programmers think a

deeper understanding of these arrays is important, especially when

programming advanced applications.

The far-right
dimension always
represents columns,
the next represents
rows, and so on.

525

EXAMPLE
C++ By

A two-dimensional array is actually an array of arrays. You

program multidimensional arrays as though they were tables with

rows and columns. A two-dimensional array is actually a single-

dimensional array, but each of its elements is not an integer, floating-

point, or character, but another array.

Knowing that a multidimensional array is an array of other

arrays is critical when passing and receiving such arrays. C++

passes all arrays, including multidimensional arrays, by address.

Suppose you were using an integer array called scores, reserved as a

5-by-6 table. You can pass scores to a function called print_it(), as

follows:

print_it(scores); // Passes table to a function.

The function print_it() has to identify the type of parameter

being passed to it. The print_it() function also must recognize that

the parameter is an array. If scores were one-dimensional, you could

receive it as

print_it(int scores[]) // Works only if scores

 // is one-dimensional.

or

print_it(int scores[10]) // Assuming scores

 // has 10 elements.

If scores were a multidimensional table, you would have to

designate each pair of brackets and put the maximum number of

subscripts in its brackets, as in

print_it(int scores[5][6]) // Inform print_it() of

 // the array’s dimensions.

or

print_it(int scores[][6]) // Inform print_it() of

 // the array’s dimensions.

Notice you do not have to explicitly state the maximum sub-

script on the first dimension when receiving multidimensional

Chapter 25 ♦ Multidimensional Arrays

526

arrays, but you must designate the second. If scores were a three-

dimensional table, dimensioned as 10 by 5 by 6, you would receive

it with print_it() as

print_it(int scores[][5][6]) // Only first dimension

 // is optional.

or

print_it(int scores[10][5][6]) // Inform print_it() of

 // array’s dimensions.

You should not have to worry too much about the way tables

are physically stored. Even though a two-dimensional table is

actually an array of arrays (and each of those arrays contains another

array if it is a three-dimensional table), you can use subscripts to

program multidimensional arrays as if they were stored in row-and-

column order.

Multidimensional arrays are stored in row order. Suppose you

want to keep track of a 3-by-4 table. The top of Figure 25.3 shows

how that table (and its subscripts) are visualized. Despite the

two-dimensional table organization, your memory is still sequen-

tial storage. C++ has to map multidimensional arrays to single-

dimensional memory, and it does so in row order.

Each row fills memory before the next row is stored. Figure 25.3

shows how a 3-by-4 table is mapped to memory.

The entire first row (table[0][0] through table[0][3]) is stored

first in memory before any of the second row. A table is actually an

array of arrays, and, as you learned in previous chapters, array

elements are always stored sequentially in memory. Therefore, the

first row (array) completely fills memory before the second row.

Figure 25.3 shows how two-dimensional arrays map to memory.

Defining Multidimensional
Arrays

C++ is not picky about the way you define a multidimensional

array when you initialize it at declaration time. As with single-

dimensional arrays, you initialize multidimensional arrays with

C++ stores
multidimensional
arrays in row order.

527

EXAMPLE
C++ By

braces that designate dimensions. Because a multidimensional ar-

ray is an array of arrays, you can nest braces when you initialize

them.

Figure 25.3. Mapping a two-dimensional table to memory.

The following three array definitions fill the three arrays ara1,

ara2, and ara3, as shown in Figure 25.4:

int ara1[5] = {8, 5, 3, 25, 41}; // One-dimensional array.

int ara2[2][4]={{4, 3, 2, 1},{1, 2, 3, 4}};

int ara3[3][4]={{1, 2, 3, 4},{5, 6, 7, 8},{9, 10, 11, 12}};

Memory

First row

Second row

Third row

Fourth row

Chapter 25 ♦ Multidimensional Arrays

528

Figure 25.4. After initializing a table.

Notice that the multidimensional arrays are stored in row

order. In ara3, the first row receives the first four elements of the

definition (1, 2, 3, and 4).

ara1

ara2

ara3

529

EXAMPLE
C++ By

TIP: To make a multidimensional array initialization match

the array’s subscripts, some programmers like to show how

arrays are filled. Because C++ programs are free-form, you can

initialize ara2 and ara3 as

int ara2[2][4]={{4, 3, 2, 1}, // Does exactly the same

 {1, 2, 3, 4}}; // thing as before.

int ara3[3][4]={{1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}; // Visually more

 // obvious.

You can initialize a multidimensional array as if it were single-

dimensional in C++. You must keep track of the row order if you do

this. For instance, the following two definitions also reserve storage

for and initialize ara2 and ara3:

int ara2[2][4]={4, 3, 2, 1, 1, 2, 3, 4};

int ara3[3][4]={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

There is no difference between initializing ara2 and ara3 with or

without the nested braces. The nested braces seem to show the

dimensions and how C++ fills them a little better, but the choice of

using nested braces is yours.

TIP: Multidimensional arrays (unless they are global) are not

initialized to specific values unless you assign them values at

declaration time or in the program. As with single-dimensional

arrays, if you initialize one or more of the elements, but not all

of them, C++ fills the rest with zeros. If you want to fill an entire

multidimensional array with zeros, you can do so with the

following:

float sales[3][4][7][2] = {0}; // Fills all sales

 // with zeros.

Chapter 25 ♦ Multidimensional Arrays

530

One last point to consider is how multidimensional arrays are

viewed by your compiler. Many people program in C++ for years,

but never understand how tables are stored internally. As long as

you use subscripts, a table’s internal representation should not

matter. When you learn about pointer variables, however, you

might want to know how C++ stores your tables in case you want to

reference them with pointers (as shown in the next few chapters).

Figure 25.5 shows the way C++ stores a 3-by-4 table in memory.

Unlike single-dimensional arrays, each element is stored contigu-

ously, but notice how C++ views the data. Because a table is an array

of arrays, the array name contains the address of the start of the

primary array. Each of those elements points to the arrays it contains

(the data in each row). This coverage of table storage is for your

information only, at this point. As you become more proficient in

C++, and write more powerful programs that manipulate internal

memory, you might want to review this table storage method.

Tables and for Loops
As the following examples show, nested for loops are useful

when you want to loop through every element of a multidimen-

sional table.

For instance, the section of code,

for (row=0; row<2; row++)

 { for (col=0; col<3; col++)

 { cout << row << “ “ << col “\n”; }

 }

produces the following output:

0 0

0 1

0 2

1 0

1 1

1 2

531

EXAMPLE
C++ By

ara name

An array of arrays

First row

Third
row

Second
row

Fourth
row

Figure 25.5. Internal representation of a two-dimensional table.

Chapter 25 ♦ Multidimensional Arrays

532

These numbers are the subscripts, in row order, for a two-row

by three-column table dimensioned with

int table[2][3];

Notice there are as many for loops as there are subscripts in the

array (two). The outside loop represents the first subscript (the

rows), and the inside loop represents the second subscript (the

columns). The nested for loop steps through each element of the

table.

You can use cin, gets(), get, and other input functions to fill a

table, and you also can assign values to the elements when declaring

the table. More often, the data comes from data files on the disk.

Regardless of what method stores the values in multidimensional

arrays, nested for loops are excellent control statements to step

through the subscripts. The following examples demonstrate how

nested for loops work with multidimensional arrays.

Examples

1. The following statements reserve enough memory elements

for a television station’s ratings (A through D) for one week:

char ratings[7][48];

These statements reserve enough elements to hold seven

days (the rows) of ratings for each 30-minute time slot (48 of

them in a day).

Every element in a table is always the same type. In this case,

each element is a character variable. Some are initialized

with the following assignment statements:

shows[3][12] = ‘B’; // Stores B in 4th row, 13th column.

shows[1][5] = ‘A’ ; // Stores C in 2nd row, 6th column.

shows[6][20] = getch(); // Stores the letter the user types.

2. A computer company sells two sizes of disks: 3 1/2-inch and

5 1/4-inch. Each disk comes in one of four capacities: single-

sided double-density, double-sided double-density, single-

sided high-density, and double-sided high-density.

Nested loops work
well with multi-
dimensional arrays.

533

EXAMPLE
C++ By

The disk inventory is well-suited for a two-dimensional

table. The company determined that the disks have the

following retail prices:

Double Density High Density

Single Double Single Double

3 1/2-inch 2.30 2.75 3.20 3.50

5 1/4-inch 1.75 2.10 2.60 2.95

The company wants to store the price of each disk in a table

for easy access. The following program stores the prices with

assignment statements.

// Filename: C25DISK1.CPP

// Assigns disk prices to a table.

#include <iostream.h>

#include <iomanip.h>

void main()

{

 float disks[2][4]; // Table of disk prices.

 int row, col; // Subscript variables.

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the prices.

 for (row=0; row<2; row++)

 { for (col=0; col<4; col++)

 { cout << “$” << setprecision(2) <<

 disks[row][col] << “\n”; }

 }

 return;

}

Chapter 25 ♦ Multidimensional Arrays

534

This program displays the prices as follows:

$2.39

$2.75

$3.29

$3.59

$1.75

$2.19

$2.69

$2.95

It prints them one line at a time, without any descriptive

titles. Although the output is not labeled, it illustrates how

you can use assignment statements to initialize a table, and

how nested for loops can print the elements.

3. The preceding disk inventory would be displayed better if

the output had descriptive titles. Before you add titles, it is

helpful for you to see how to print a table in its native row

and column format.

Typically, you use a nested for loop, such as the one in the

previous example, to print rows and columns. You should

not output a newline character with every cout, however. If

you do, you see one value per line, as in the previous

program’s output, which is not the row and column format

of the table.

You do not want to see every disk price on one line, but you

want each row of the table printed on a separate line. You

must insert a cout << “\n”; to send the cursor to the next line

each time the row number changes. Printing newlines after

each row prints the table in its row and column format, as

this program shows:

// Filename: C25DISK2.CPP

// Assigns disk prices to a table

// and prints them in a table format.

#include <iostream.h>

#include <iomanip.h>

void main()

{

535

EXAMPLE
C++ By

 float disks[2][4]; // Table of disk prices.

 int row, col;

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the prices

 for (row=0; row<2; row++)

 { for (col=0; col<4; col++)

 { cout << “$” << setprecision(2) <<

 disks[row][col] << “\t”;

 }

 cout << “\n”; // Prints a new line after each row.

 }

 return;

}

Here is the output of the disk prices in their native table

order:

$2.39 $2.75 $3.29 $3.59

$1.75 $2.19 $2.69 $2.95

4. To add the titles, simply print a row of titles before the first

row of values, then print a new column title before each

column, as shown in the following program:

// Filename: C25DISK3.CPP

// Assigns disk prices to a table

// and prints them in a table format with titles.

#include <iostream.h>

#include <iomanip.h>

Chapter 25 ♦ Multidimensional Arrays

536

void main()

{

 float disks[2][4]; // Table of disk prices.

 int row, col;

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the column titles.

 cout << “\tSingle-sided\tDouble-sided\tSingle-sided\t” <<

 “Double-sided\n”;

 cout << “\tDouble-density\tDouble-density\tHigh-density” <<

 “\tHigh-density\n”;

 // Print the prices

 for (row=0; row<2; row++)

 { if (row == 0)

 { cout << “3-1/2\”\t”; } // Need \” to

 // print quotation.

 else

 { cout << “5-1/4\”\t”; }

 for (col=0; col<4; col++) // Print the current row.

 { cout << setprecision(2) << “$” << disks[row][col]

 << “\t\t”;

 }

 cout << “\n”; // Print a newline after each row.

 }

 return;

}

537

EXAMPLE
C++ By

Here is the output from this program:

 Single-sided Double-sided Single-sided Double-sided

 Double-density Double-density High-density High-density

3-1/2" $2.39 $2.75 $3.29 $3.59

5-1/4" $1.75 $2.19 $2.69 $2.95

Review Questions
The answers to the review questions are in Appendix B.

1. What statement reserves a two-dimensional table of integers

called scores with five rows and six columns?

2. What statement reserves a three-dimensional table of four

character arrays called initials with 10 rows and 20 columns?

3. In the following statement, which subscript (first or second)

represents rows and which represents columns?

int weights[5][10];

4. How many elements are reserved with the following

statement?

int ara[5][6];

5. The following table of integers is called ara:

4 1 3 5 9

10 2 12 1 6

25 42 2 91 8

What values do the following elements contain?

a. ara[2][2]

b. ara[0][1]

c. ara[2][3]

d. ara[2][4]

Chapter 25 ♦ Multidimensional Arrays

538

6. What control statement is best for stepping through multi-

dimensional arrays?

7. Notice the following section of a program:

int grades[3][5] = {80,90,96,73,65,67,90,68,92,84,70,

 55,95,78,100};

What are the values of the following:

a. grades[2][3]

b. grades[2][4]

c. grades[0][1]

Review Exercises
1. Write a program that stores and prints the numbers from 1

to 21 in a 3-by-7 table. (Hint: Remember C++ begins sub-

scripts at 0.)

2. Write a program that reserves storage for three years’ worth

of sales data for five salespeople. Use assignment statements

to fill the table with data, then print it, one value per line.

3. Instead of using assignment statements, use the cin function

to fill the salespeople data from Exercise 2.

4. Write a program that tracks the grades for five classes, each

having 10 students. Input the data using the cin function.

Print the table in its native row and column format.

Summary
You now know how to create, initialize, and process multidi-

mensional arrays. Although not all data fits in the compact format

of tables, much does. Using nested for loops makes stepping through

a multidimensional array straightforward.

539

EXAMPLE
C++ By

One of the limitations of a multidimensional array is that each

element must be the same data type. This keeps you from being able

to store several kinds of data in tables. Chapter 28, “Structures,”

shows you how to store data in different ways to overcome this

limitation.

Chapter 25 ♦ Multidimensional Arrays

540

