
541

EXAMPLE
C++ By

26

Pointers

C++ reveals its true power through pointer variables. Pointer vari-

ables (or pointers, as they generally are called) are variables that

contain addresses of other variables. All variables you have seen so

far have held data values. You understand that variables hold

various data types: character, integer, floating-point, and so on.

Pointer variables contain the location of regular data variables; they

in effect point to the data because they hold the address of the data.

When first learning C++, students of the language tend to shy

away from pointers, thinking that pointers will be difficult. Pointers

do not have to be difficult. In fact, after you work with them for a

while, you will find they are easier to use than arrays (and much

more flexible).

This chapter introduces the following concepts:

♦ Pointers

♦ Pointers of different data types

♦ The “address of” (&) operator

♦ The dereferencing (*) operator

♦ Arrays of pointers

Chapter 26 ♦ Pointers

542

Pointers offer a highly efficient means of accessing and chang-

ing data. Because pointers contain the actual address of your data,

your compiler has less work to do when finding that data in

memory. Pointers do not have to link data to specific variable names.

A pointer can point to an unnamed data value. With pointers, you

gain a “different view” of your data.

Introduction to Pointer
Variables

Pointers are variables. They follow all the normal naming rules

of regular, nonpointer variables. As with regular variables, you

must declare pointer variables before using them. There is a type of

pointer for every data type in C++; there are integer pointers,

character pointers, floating-point pointers, and so on. You can

declare global pointers or local pointers, depending on where you

declare them.

About the only difference between pointer variables and regu-

lar variables is the data they hold. Pointers do not contain data in the

usual sense of the word. Pointers contain addresses of data. If you

need a quick review of addresses and memory, see Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review.”

There are two pointer operators in C++:

& The “address of” operator

* The dereferencing operator

Don’t let these operators throw you; you might have seen them

before! The & is the bitwise AND operator (from Chapter 11, “Addi-

tional C++ Operators”) and the * means, of course, multiplication.

These are called overloaded operators. They perform more than one

function, depending on how you use them in your programs. C++

does not confuse * for multiplication when you use it as a

dereferencing operator with pointers.

Pointers contain
addresses of other
variables.

543

EXAMPLE
C++ By

Any time you see the & used with pointers, think of the words

“address of.” The & operator always produces the memory address

of whatever it precedes. The * operator, when used with pointers,

either declares a pointer or dereferences the pointer’s value. The

next section explains each of these operators.

Declaring Pointers

Because you must declare all pointers before using them, the

best way to begin learning about pointers is to understand how to

declare and define them. Actually, declaring pointers is almost as

easy as declaring regular variables. After all, pointers are variables.

If you must declare a variable that holds your age, you could do

so with the following variable declaration:

int age=30; // Declare a variable to hold my age.

Declaring age like this does several things. It enables C++ to

identify a variable called age, and to reserve storage for that variable.

Using this format also enables C++ to recognize that you will store

only integers in age, not floating-point or double floating-point data.

The declaration also requests that C++ store the value of 30 in age

after it reserves storage for age.

Where did C++ store age in memory? As the programmer, you

should not really care where C++ stores age. You do not have to

know the variable’s address because you will never refer to age by its

address. If you want to calculate with or print age, you call it by its

name, age.

TIP: Make your pointer variable names meaningful. The name

file_ptr makes more sense than x13 for a file-pointing variable,

although either name is allowed.

Suppose you want to declare a pointer variable. This pointer

variable will not hold your age, but it will point to age, the variable

that holds your age. (Why you would want to do this is explained in

this and the next few chapters.) p_age might be a good name for the

pointer variable. Figure 26.1 illustrates what you want to do. The

Chapter 26 ♦ Pointers

544

figure assumes C++ stored age at the address 350,606. Your C++

compiler, however, arbitrarily determines the address of age, so it

could be anything.

Figure 26.1. p_age contains the address of age; p_age points to the age
variable.

The name p_age has nothing to do with pointers, except that it

is the name you made up for the pointer to age. Just as you can name

variables anything (as long as the name follows the legal naming

rules of variables), p_age could just as easily have been named house,

x43344, space_trek, or whatever else you wanted to call it. This

reinforces the idea that a pointer is just a variable you reserve in your

program. Create meaningful variable names, even for pointer vari-

ables. p_age is a good name for a variable that points to age (as would

be ptr_age and ptr_to_age).

To declare the p_age pointer variable, you must program the

following:

int * p_age; // Declares an integer pointer.

Similar to the declaration for age, this declaration reserves a

variable called p_age. The p_age variable is not a normal integer

variable, however. Because of the dereferencing operator, *, C++

knows this is to be a pointer variable. Some C++ programmers

prefer to declare such a variable without a space after the *, as

follows:

int *p_age; // Declares an integer pointer.

545

EXAMPLE
C++ By

Either method is okay, but you must remember the * is not part

of the name. When you later use p_age, you will not prefix the name

with the *, unless you are dereferencing it at the time (as later

examples show).

TIP: Whenever the dereferencing operator, *, appears in a

variable definition, the variable being declared is always a

pointer variable.

Consider the declaration for p_age if the asterisk were not there:

C++ would think you were declaring a regular integer variable. The

* is important, because it tells C++ to interpret p_age as a pointer

variable, not as a normal, data variable.

Assigning Values to Pointers

p_age is an integer pointer. This is very important. p_age can

point only to integer values, never to floating-point, double floating-

point, or even character variables. If you needed to point to a

floating-point variable, you might do so with a pointer declared as

float *point; // Declares a floating-point pointer.

As with any automatic variable, C++ does not initialize point-

ers when you declare them. If you declared p_age as previously

described, and you wanted p_age to point to age, you would have to

explicitly assign p_age to the address of age. The following statement

does this:

p_age = &age; // Assign the address of age to p_age.

What value is now in p_age? You do not know exactly, but you

know it is the address of age, wherever that is. Rather than assign the

address of age to p_age with an assignment operator, you can declare

and initialize pointers at the same time. These lines declare and

initialize both age and p_age:

int age=30; // Declares a regular integer

 // variable, putting 30 in it.

Pointers can point
only to data of their
own type.

Chapter 26 ♦ Pointers

546

int *p_age=&age; // Declares an integer pointer,

 // initializing it with the address

 // of p_age.

These two lines produce the variables described in Figure 26.1.

If you wanted to print the value of age, you could do so with the

following cout:

cout << age; // Prints the value of age.

You also can print the value of age like this:

cout << *p_age; // Dereferences p_age.

The dereference operator produces a value that tells the pointer

where to point. Without the *, the last cout would print an address

(the address of age). With the *, the cout prints the value at that

address.

You can assign a different value to age with the following

statement:

age=41; // Assigns a new value to age.

You also can assign a value to age like this:

*p_age=41;

This declaration assigns 41 to the value to which p_age points.

TIP: The * appears before a pointer variable in only two

places—when you declare a pointer variable, and when you

dereference a pointer variable (to find the data it points to).

Pointers and Parameters

Now that you understand the pointer’s * and & operators, you

can finally see why scanf()’s requirements were not as strict as they

first seemed. While passing a regular variable to scanf(), you had to

prefix the variable with the & operator. For instance, the following

scanf() gets three integer values from the user:

scanf(“ %d %d %d”, &num1, &num2, &num3);

547

EXAMPLE
C++ By

This scanf() does not pass the three variables, but passes the

addresses of the three variables. Because scanf() knows the exact

locations of these parameters in memory (because their addresses

were passed), it goes to those addresses and puts the keyboard input

values into those addresses.

This is the only way scanf() could work. If you passed these

variables by copy, without putting the “address of” operator (&)

before them, scanf() would get the keyboard input and fill a copy of

the variables, but not the actual variables num1, num2, and num3. When

scanf() then returned control to your program, you would not have

the input values. Of course, the cin operator does not have the

ampersand (&) requirement and is easier to use for most C++

programs.

You might recall from Chapter 18, “Passing Values,” that you

can override C++’s normal default of passing by copy (or “by

value”). To pass by address, receive the variable preceded by an & in

the receiving function. The following function receives tries by

address:

pr_it(int &tries); // Receive integer tries in pr_it() by

 // address (pr it would normally receive

 // tries by copy).

Now that you understand the & and * operators, you can

understand completely the passing of nonarray parameters by

address to functions. (Arrays default to passing by address without

requiring that you use &.)

Examples

1. The following section of code declares three regular vari-

ables of three different data types, and three corresponding

pointer variables:

char initial= ‘Q’; // Declares three regular variables

int num=40; // of three different types.

float sales=2321.59;

Chapter 26 ♦ Pointers

548

char *p_initial=&initial; // Declares three pointers.

int * ptr_num=# // Pointer names and spacing

float * sales_add = &sales; // after * are not critical.

2. Just like regular variables, you can initialize pointers with

assignment statements. You do not have to initialize them

when you declare them. The next few lines of code are

equivalent to the code in Example 1:

char initial; // Declares three regular variables

int num; // of three different types.

float sales;

char *p_initial; // Declares three pointers but does

int * ptr_num; // not initialize them yet.

float * sales_add;

initial=’Q’; // Initializes the regular variables

num=40; // with values.

sales=2321.59;

p_initial=&initial; // Initializes the pointers with

ptr_num=# // the addresses of their

sales_add=&sales; // corresponding variables.

Notice that you do not put the * operator before the pointer

variable names when assigning them values. You would

prefix a pointer variable with the * only if you were

dereferencing it.

NOTE: In this example, the pointer variables could have been

assigned the addresses of the regular variables before the

regular variables were assigned values. There would be no

difference in the operation. The pointers are assigned the

addresses of the regular variables no matter what the data in

the regular variables are.

549

EXAMPLE
C++ By

Keep the data type of each pointer consistent with its corre-

sponding variable. Do not assign a floating-point variable to

an integer’s address. For instance, you cannot make the

following assignment statement:

p_initial = &sales; // Invalid pointer assignment.

because p_initial can point only to character data, not to

floating-point data.

3. The following program is an example you should study

closely. It shows more about pointers and the pointer opera-

tors, & and *, than several pages of text can do.

// Filename: C26POINT.CPP

// Demonstrates the use of pointer declarations

// and operators.

#include <iostream.h>

void main()

{

 int num=123; // A regular integer variable.

 int *p_num; // Declares an integer pointer.

 cout << “num is “ << num << “\n”; // Prints value of num.

 cout << “The address of num is “ << &num << “\n”;

 // Prints num’s location.

 p_num = # // Puts address of num in p_num,

 // in effect making p_num point

 // to num.

 // No * in front of p_num.

 cout << “*p_num is “ << *p_num << “\n”; // Prints value

 // of num.

 cout << “p_num is “ << p_num << “\n”; // Prints location

 // of num.

 return;

}

Chapter 26 ♦ Pointers

550

Here is the output from this program:

num is 123

The address of num is 0x8fbd0ffe

*p_num is 123

p_num is 0x8fbd0ffe

If you run this program, you probably will get different

results for the value of p_num because your compiler will

place num at a different location, depending on your memory

setup. The value of p_num prints in hexadecimal because it is

an address of memory. The actual address does not matter,

however. Because the pointer p_num always contains the

address of num, and because you can dereference p_num to get

num’s value, the actual address is not critical.

4. The following program includes a function that swaps the

values of any two integers passed to it. You might recall that

a function can return only a single value. Therefore, before

now, you could not write a function that changed two

different values and returned both values to the calling

function.

To swap two variables (reversing their values for sorting, as

you saw in Chapter 24, “Array Processing”), you need the

ability to pass both variables by address. Then, when the

function reverses the variables, the calling function’s vari-

ables also are swapped.

Notice the function’s use of dereferencing operators before

each occurrence of num1 and num2. It does not matter at which

address num1 and num2 are stored, but you must make sure

that you dereference whatever addresses were passed to the

function.

Be sure to receive arguments with the prefix & in functions

that receive by address, as done here.

551

EXAMPLE
C++ By

Identify the program and include the I/O header file. This program swaps
two integers, so initialize two integer variables in main(). Pass the variables
to the swapping function, called swap_them, then switch their values. Print
the results of the swap in main().

// Filename: C26SWAP.CPP

// Program that includes a function that swaps

// any two integers passed to it

#include <iostream.h>

void swap_them(int &num1, int &num2);

void main()

{

 int i=10, j=20;

 cout << “\n\nBefore swap, i is “ << i <<

 “ and j is “ << j << “\n\n”;

 swap_them(i, j);

 cout << “\n\nAfter swap, i is “ << i <<

 “ and j is “ << j << “\n\n”;

 return;

}

void swap_them(int &num1, int &num2)

{

 int temp; // Variable that holds

 // in-between swapped value.

 temp = num1; // The calling function’s variables

 num1 = num2; // (and not copies of them) are

 num2 = temp; // changed in this function.

 return;

}

Arrays of Pointers
If you have to reserve many pointers for many different values,

you might want to declare an array of pointers. You know that you

can reserve an array of characters, integers, long integers, and

floating-point values, as well as an array of every other data type

available. You also can reserve an array of pointers, with each

pointer being a pointer to a specific data type.

Chapter 26 ♦ Pointers

552

Figure 26.2. An array of 10 integer pointers.

The following reserves an array of 20 character pointer

variables:

char *cpoint[20]; // Array of 20 character pointers.

Again, the asterisk is not part of the array name. The asterisk

lets C++ know that this is an array of integer pointers and not just

an array of integers.

The following reserves an array of 10 integer pointer variables:

int *iptr[10]; // Reserves an array of 10 integer pointers

Figure 26.2 shows how C++ views this array. Each element

holds an address (after being assigned values) that points to other

values in memory. Each value pointed to must be an integer. You can

assign an element from iptr an address just as you would for

nonarray pointer variables. You can make iptr[4] point to the

address of an integer variable named age by assigning it like this:

iptr[4] = &age; // Make iptr[4] point to address of age.

553

EXAMPLE
C++ By

Some beginning C++ students get confused when they see such

a declaration. Pointers are one thing, but reserving storage for arrays

of pointers tends to bog novices down. However, reserving storage

for arrays of pointers is easy to understand. Remove the asterisk

from the previous declaration as follows,

char cpoint[20];

and what do you have? You have just reserved a simple array of 20

characters. Adding the asterisk tells C++ to go one step further:

rather than an array of character variables, you want an array of

character pointing variables. Rather than having each element be a

character variable, you have each element hold an address that

points to characters.

Reserving arrays of pointers will be much more meaningful

after you learn about structures in the next few chapters. As with

regular, nonpointing variables, an array makes processing several

pointer variables much easier. You can use a subscript to reference

each variable (element) without having to use a different variable

name for each value.

Review Questions
Answers to review questions are in Appendix B.

1. What type of variable is reserved in each of the following?

a. int *a;

b. char * cp;

c. float * dp;

2. What words should come to mind when you see the &

operator?

3. What is the dereferencing operator?

4. How would you assign the address of the floating-point

variable salary to a pointer called pt_sal?

5. True or false: You must define a pointer with an initial value

when declaring it.

Chapter 26 ♦ Pointers

554

6. In both of the following sections of code:

int i;

int * pti;

i=56;

pti = &i;

and

int i;

int * pti;

pti = &i; // These two lines are reversed

i=56; // from the preceding example.

is the value of pti the same after the fourth line of each

section?

7. In the following section of code:

float pay;

float *ptr_pay;

pay=2313.54;

ptr_pay = &pay;

What is the value of each of the following (answer “invalid”

if it cannot be determined):

a. pay

b. *ptr_pay

c. *pay

d. &pay

8. What does the following declare?

double *ara[4][6];

a. An array of double floating-point values

b. An array of double floating-point pointer variables

c. An invalid declaration statement

555

EXAMPLE
C++ By

NOTE: Because this is a theory-oriented chapter, review exer-

cises are saved until you master Chapter 27, “Pointers and

Arrays.”

Summary
Declaring and using pointers might seem troublesome at this

point. Why assign *p_num a value when it is easier (and clearer) to

assign a value directly to num? If you are asking yourself that

question, you probably understand everything you should from

this chapter and are ready to begin learning the true power of

pointers: combining pointers and array processing.

Chapter 26 ♦ Pointers

556

