
557

EXAMPLE
C++ By

27

Pointers and
Arrays

Arrays and pointers are closely related in the C++ programming

language. You can address arrays as if they were pointers and

address pointers as if they were arrays. Being able to store and access

pointers and arrays gives you the ability to store strings of data in

array elements. Without pointers, you could not store strings of data

in arrays because there is no fundamental string data type in C++ (no

string variables, only string literals).

This chapter introduces the following concepts:

♦ Array names and pointers

♦ Character pointers

♦ Pointer arithmetic

♦ Ragged-edge arrays of string data

This chapter introduces concepts you will use for much of your

future programming in C++. Pointer manipulation is important to

the C++ programming language.

Chapter 27 ♦ Pointers and Arrays

558

Array Names as Pointers
An array name is just a pointer, nothing more. To prove this,

suppose you have the following array declaration:

int ara[5] = {10, 20, 30, 40, 50};

If you printed ara[0], you would see 10. Because you now fully

understand arrays, this is the value you would expect.

But what if you were to print *ara? Would *ara print anything?

If so, what? If you thought an error message would print because ara

is not a pointer but an array, you would be wrong. An array name

is a pointer. If you print *ara, you also would see 10.

Recall how arrays are stored in memory. Figure 27.1 shows

how ara would be mapped in memory. The array name, ara, is

nothing more than a pointer pointing to the first element of the array.

Therefore, if you dereference that pointer, you dereference the value

stored in the first element of the array, which is 10. Dereferencing ara

is exactly the same thing as referencing to ara[0], because they both

produce the same value.

An array name is a
pointer.

Figure 27.1. Storing the array called ara in memory.

You now see that you can reference an array with subscripts or

with pointer dereferencing. Can you use pointer notation to print

the third element of ara? Yes, and you already have the tools to do

so. The following cout prints ara[2] (the third element of ara) without

using a subscript:

cout << *(ara+2) ; // Prints ara[2].

ara

559

EXAMPLE
C++ By

The expression *(ara+2) is not vague at all, if you remember that

an array name is just a pointer that always points to the array’s first

element. *(ara+2) takes the address stored in ara, adds two to the

address, and dereferences that location. The following holds true:

ara+0 points to ara[0]

ara+1 points to ara[1]

ara+2 points to ara[2]

ara+3 points to ara[3]

ara+4 points to ara[4]

Therefore, to print, store, or calculate with an array element,

you can use either the subscript notation or the pointer notation.

Because an array name contains the address of the array’s first

element, you must dereference the pointer to get the element’s

value.

Internal Locations

C++ knows the internal data size requirements of characters,

integers, floating-points, and the other data types on your

computer. Therefore, because ara is an integer array, and

because each element in an integer array consumes two to four

bytes of storage, depending on the computer, C++ adds two or

four bytes to the address if you reference arrays as just shown.

If you write *(ara+3) to refer to ara[3], C++ would add six or

twelve bytes to the address of ara to get the third element. C++

does not add an actual three. You do not have to worry about

this, because C++ handles these internals. When you write

*(ara+3), you are actually requesting that C++ add three integer

addresses to the address of ara. If ara were a floating-point

array, C++ would add three floating-point addresses to ara.

Chapter 27 ♦ Pointers and Arrays

560

Pointer Advantages
Although arrays are actually pointers in disguise, they are

special types of pointers. An array name is a pointer constant, not a

pointer variable. You cannot change the value of an array name,

because you cannot change constants. This explains why you cannot

assign an array new values during a program’s execution. For

instance, even if cname is a character array, the following is not valid

in C++:

cname = “Christine Chambers”; // Invalid array assignment.

The array name, cname, cannot be changed because it is a

constant. You would not attempt the following

5 = 4 + 8 * 21; // Invalid assignment

because you cannot change the constant 5 to any other value. C++

knows that you cannot assign anything to 5, and C++ prints an error

message if you attempt to change 5. C++ also knows an array name

is a constant and you cannot change an array to another value. (You

can assign values to an array only at declaration time, one element

at a time during execution, or by using functions such as strcpy().)

This brings you to the most important reason to learn pointers:

pointers (except arrays referenced as pointers) are variables. You

can change a pointer variable, and being able to do so makes

processing virtually any data, including arrays, much more power-

ful and flexible.

Examples

1. By changing pointers, you make them point to different

values in memory. The following program demonstrates

how to change pointers. The program first defines two

floating-point values. A floating-point pointer points to the

first variable, v1, and is used in the cout. The pointer is then

changed so it points to the second floating-point variable, v2.

// Filename: C27PTRCH.CPP

// Changes the value of a pointer variable.

#include <iostream.h>

An array name is a
pointer constant.

561

EXAMPLE
C++ By

#include <iomanip.h>

void main()

{

 float v1=676.54; // Defines two

 float v2=900.18; // floating-point variables.

 float * p_v; / Defines a floating-point pointer.

 p_v = &v1; // Makes pointer point to v1.

 cout << “The first value is “ << setprecision(2) <<

 *p_v << “\n”; // Prints 676.54.

 p_v = &v2; // Changes the pointer so it

 // points to v2.

 cout << “The second value is “ << setprecision(2) <<

 *p_v << “\n”; // Prints 900.18.

 return;

}

Because they can change pointers, most C++ programmers

use pointers rather than arrays. Because arrays are easy to

declare, C++ programmers sometimes declare arrays and

then use pointers to reference those arrays. If the array data

changes, the pointer helps to change it.

2. You can use pointer notation and reference pointers as

arrays with array notation. The following program declares

an integer array and an integer pointer that points to the

start of the array. The array and pointer values are printed

using subscript notation. Afterwards, the program uses

array notation to print the array and pointer values.

Study this program carefully. You see the inner workings of

arrays and pointer notation.

// Filename: C27ARPTR.CPP

// References arrays like pointers and

// pointers like arrays.

#include <iostream.h>

void main()

{

 int ctr;

 int iara[5] = {10, 20, 30, 40, 50};

Chapter 27 ♦ Pointers and Arrays

562

 int *iptr;

 iptr = iara; // Make iptr point to array’s first

 // element. This would work also:

 // iptr = &iara[0];

 cout << “Using array subscripts:\n”;

 cout << “iara\tiptr\n”;

 for (ctr=0; ctr<5; ctr++)

 { cout << iara[ctr] << “\t” << iptr[ctr] << “\n”; }

 cout << “\nUsing pointer notation:\n”;

 cout << “iara\tiptr\n”;

 for (ctr=0; ctr<5; ctr++)

 { cout << *(iara+ctr) << “\t” << *(iptr+ctr) << “\n”; }

 return;

}

Here is the program’s output:

Using array subscripts:

iara iptr

10 10

20 20

30 30

40 40

50 50

Using pointer notation:

iara iptr

10 10

20 20

30 30

40 40

50 50

563

EXAMPLE
C++ By

Using Character Pointers
The ability to change pointers is best seen when working with

character strings in memory. You can store strings in character

arrays, or point to them with character pointers. Consider the

following two string definitions:

char cara[] = “C++ is fun”; // An array holding a string

char *cptr = “C++ By Example”; // A pointer to the string

Figure 27.2 shows how C++ stores these two strings in memory.

C++ stores both in basically the same way. You are familiar with the

array definition. When assigning a string to a character pointer, C++

finds enough free memory to hold the string and assign the address

of the first character to the pointer. The previous two string defini-

tion statements do almost exactly the same thing; the only difference

between them is that the two pointers can easily be exchanged (the

array name and the character pointers).

Because cout prints strings starting at the array or pointer name

until the null zero is reached, you can print each of these strings with

the following cout statements:

cout << “String 1: “ << cara << “\n”;

cout << “String 2: “ << cptr << “\n”;

You print strings in arrays and pointed-to strings the same

way. You might wonder what advantage one method of storing

strings has over the other. The seemingly minor difference between

these stored strings makes a big difference when you change them.

Suppose you want to store the string Hello in the two strings.

You cannot assign the string to the array like this:

cara = “Hello”; // Invalid

Because you cannot change the array name, you cannot assign

it a new value. The only way to change the contents of the array is by

assigning the array characters from the string an element at a time,

or by using a built-in function such as strcpy(). You can, however,

make the character array point to the new string like this:

Character pointers
can point to the first
character of a string.

Chapter 27 ♦ Pointers and Arrays

564

cptr = “Hello”; // Change the pointer so

 // it points to the new string.

Figure 27.2. Storing two strings: One in an array and one pointed to by a
pointer variable.

565

EXAMPLE
C++ By

TIP: If you want to store user input in a string pointed to by a

pointer, first you must reserve enough storage for that input

string. The easiest way to do this is to reserve a character array,

then assign a character pointer to the beginning element of that

array like this:

char input[81]; // Holds a string as long as

 // 80 characters.

char *iptr=input; // Also could have done this:

 // char *iptr=&input[0];

Now you can input a string by using the pointer:

gets(iptr); // Make sure iptr points to

 // the string typed by the user.

You can use pointer manipulation, arithmetic, and modifica-

tion on the input string.

Examples

1. Suppose you want to store your sister’s full name and print

it. Rather than using arrays, you can use a character pointer.

The following program does just that.

// Filename: C27CP1.CPP

// Stores a name in a character pointer.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s name is “ << c << “\n”;

 return;

}

This prints the following:

My sister’s name is Bettye Lou Horn

Chapter 27 ♦ Pointers and Arrays

566

2. Suppose you must change a string pointed to by a character

pointer. If your sister changed her last name to Henderson,

your program can show both strings in the following man-

ner:

Identify the program and include the I/O header file. This program
uses a character pointer, c, to point to a string literal in memory.
Point to the string literal, and print the string. Make the character-
pointer point to a new string literal, then print the new string.

// Filename: C27CP2.CPP

// Illustrates changing a character string.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c = “Bettye Lou Henderson”; // Assigns new string to c.

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

The output is as follows:

My sister’s maiden name was Bettye Lou Horn

My sister’s married name is Bettye Lou Henderson

3. Do not use character pointers to change string constants.

Doing so can confuse the compiler, and you probably will

not get the results you expect. The following program is

similar to those you just saw. Rather than making the charac-

ter pointer point to a new string, this example attempts to

change the contents of the original string.

// Filename: C27CP3.CPP

// Illustrates changing a character string improperly.

#include <iostream.h>

void main()

567

EXAMPLE
C++ By

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c += 11; // Makes c point to the last name

 // (the twelfth character).

 c = “Henderson”; // Assigns a new string to c.

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

The program seems to change the last name from Horn

to Henderson, but it does not. Here is the output of this

program:

My sister’s maiden name was Bettye Lou Horn

My sister’s married name is Henderson

Why didn’t the full string print? Because the address

pointed to by c was incremented by 11, c still points to

Henderson, so that was all that printed.

4. You might guess at a way to fix the previous program.

Rather than printing the string stored at c after assigning it

to Henderson, you might want to decrement it by 11 so it

points to its original location, the start of the name. The code

to do this follows, but it does not work as expected. Study

the program before reading the explanation.

// Filename: C27CP4.C

// Illustrates changing a character string improperly.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c += 11; // Makes c point to the last

 // name (the twelfth character).

Chapter 27 ♦ Pointers and Arrays

568

 c = “Henderson”; // Assigns a new string to c.

 c -= 11; // Makes c point to its

 // original location (???).

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

This program produces garbage at the second cout. There are

actually two string literals in this program. When you first

assign c to Bettye Lou Horn, C++ reserves space in memory

for the constant string and puts the starting address of the

string in c.

When the program then assigns c to Henderson, C++ finds

room for another character constant, as shown in Figure 27.3.

If you subtract 11 from the location of c, after it points to the

new string Henderson, c points to an area of memory your

program is not using. There is no guarantee that printable

data appears before the string constant Henderson. If you want

to manipulate parts of the string, you must do so an element

at a time, just as you must with arrays.

Pointer Arithmetic
You saw an example of pointer arithmetic when you accessed

array elements with pointer notation. By now you should be com-

fortable with the fact that both of these array or pointer references

are identical:

ara[sub] and *(ara + sub)

You can increment or decrement a pointer. If you increment a

pointer, the address inside the pointer variable increments. The

pointer does not always increment by one, however.

Suppose f_ptr is a floating-point pointer indexing the first

element of an array of floating-point numbers. You could initialize

f_ptr as follows:

float fara[] = {100.5, 201.45, 321.54, 389.76, 691.34};

f_ptr = fara;

569

EXAMPLE
C++ By

New string in memory

Figure 27.3. Two string constants appear in memory because two string
constants are used in the program.

Chapter 27 ♦ Pointers and Arrays

570

Figure 27.4 shows what these variables look like in memory.

Each floating-point value in this example takes four bytes of memory.

Figure 27.4. A floating-point array and a pointer.

If you print the value of *f_ptr, you see 100.5. Suppose you

increment f_ptr by one with the following statement:

f_ptr++;

C++ does not add one to the address in f_ptr, even though it

seems as though one should be added. In this case, because floating-

point values take four bytes each on this machine, C++ adds four to

f_ptr. How does C++ know how many bytes to add to f_ptr? C++

knows from the pointer’s declaration how many bytes of memory

pointers take. This is why you have to declare the pointer with the

correct data type.

After incrementing f_ptr, if you were to print *f_ptr, you would

see 201.45, the second element in the array. If C++ added only one to

the address in f_ptr, f_ptr would point only to the second byte, 100.5.

This would output garbage to the screen.

NOTE: When you increment a pointer, C++ adds one full data-

type size (in bytes) to the pointer, not one byte. When you

decrement a pointer, C++ subtracts one full data type size (in

bytes) from the pointer.

Incrementing a
pointer can add
more than one byte
to the pointer.

571

EXAMPLE
C++ By

Examples

1. The following program defines an array with five values. An

integer pointer is then initialized to point to the first element

in the array. The rest of the program prints the dereferenced

value of the pointer, then increments the pointer so it points

to the next integer in the array.

Just to show you what is going on, the size of integer values

is printed at the bottom of the program. Because (in this

case) integers take two bytes, C++ increments the pointer by

two so it points to the next integer. (The integers are two

bytes apart from each other.)

// Filename: C27PTI.CPP

// Increments a pointer through an integer array.

#include <iostream.h>

void main()

{

 int iara[] = {10,20,30,40,50};

 int *ip = iara; // The pointer points to

 // The start of the array.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n\n”;

 cout << “The integer size is “ << sizeof(int);

 cout << “ bytes on this machine \n\n”;

 return;

}

Chapter 27 ♦ Pointers and Arrays

572

Here is the output from the program:

10

20

30

40

50

The integer size is two bytes on this machine

2. Here is the same program using a character array and a

character pointer. Because a character takes only one byte of

storage, incrementing a character pointer actually adds just

one to the pointer; only one is needed because the characters

are only one byte apart.

// Filename: C27PTC.CPP

// Increments a pointer through a character array.

#include <iostream.h>

void main()

{

 char cara[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

 char *cp = cara; // The pointers point to

 // the start of the array.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n\n”;

 cout << “The character size is “ << sizeof(char);

 cout << “ byte on this machine\n”;

 return;

}

3. The next program shows the many ways you can add to,

subtract from, and reference arrays and pointers. The pro-

gram defines a floating-point array and a floating-point

pointer. The body of the program prints the values from the

array using array and pointer notation.

573

EXAMPLE
C++ By

// Filename: C27ARPT2.CPP

// Comprehensive reference of arrays and pointers.

#include <iostream.h>

void main()

{

 float ara[] = {100.0, 200.0, 300.0, 400.0, 500.0};

 float *fptr; // Floating-point pointer.

 // Make pointer point to array’s first value.

 fptr = &ara[0]; // Also could have been this:

 // fptr = ara;

 cout << *fptr << “\n”; // Prints 100.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 200.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 300.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 400.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 500.0

 fptr = ara; // Points to first element again.

 cout << *(fptr+2) << “\n”; // Prints 300.00 but

 // does not change fptr.

 // References both array and pointer using subscripts.

 cout << (fptr+0)[0] << “ “ << (ara+0)[0] << “\n”;

 // 100.0 100.0

 cout << (fptr+1)[0] << “ “ << (ara+1)[0] << “\n”;

 // 200.0 200.0

 cout << (fptr+4)[0] << “ “ << (ara+4)[0] << “\n”;

 // 500.0 500.0

 return;

}

The following is the output from this program:

100.0

200.0

300.0

400.0

Chapter 27 ♦ Pointers and Arrays

574

500.0

300.0

100.0 100.0

200.0 200.0

500.0 500.0

Arrays of Strings
You now are ready for one of the most useful applications of

character pointers: storing arrays of strings. Actually, you cannot

store an array of strings, but you can store an array of character

pointers, and each character pointer can point to a string in memory.

By defining an array of character pointers, you define a ragged-
edge array. A ragged-edge array is similar to a two-dimensional

table, except each row contains a different number of characters

(instead of being the same length).

The word ragged-edge derives from the use of word processors.

A word processor typically can print text fully justified or with a

ragged-right margin. The columns of this paragraph are fully justi-

fied, because both the left and the right columns align evenly. Letters

you write by hand and type on typewriters (remember what a

typewriter is?) generally have ragged-right margins. It is difficult to

type so each line ends in exactly the same right column.

All two-dimensional tables you have seen so far have been fully

justified. For example, if you declared a character table with five

rows and 20 columns, each row would contain the same number of

characters. You could define the table with the following statement:

char names[5][20]={ {“George”},

 {“Michelle”},

 {“Joe”},

 {“Marcus”},

 {“Stephanie”} };

This table is shown in Figure 27.5. Notice that much of the table

is wasted space. Each row takes 20 characters, even though the data

in each row takes far fewer characters. The unfilled elements contain

null zeros because C++ nullifies all elements you do not initialize in

arrays. This type of table uses too much memory.

An array that a
character pointer
defines is a ragged-
edge array.

575

EXAMPLE
C++ By

Figure 27.5. A fully justified table.

To fix the memory-wasting problem of fully justified tables,

you should declare a single-dimensional array of character pointers.

Each pointer points to a string in memory, and the strings do not

have to be the same length.

Here is the definition for such an array:

char *names[5]={ {“George”},

 {“Michelle”},

 {“Joe”},

 {“Marcus”},

 {“Stephanie”} };

This array is single-dimensional. The definition should not

confuse you, although it is something you have not seen. The

asterisk before names makes this an array of pointers. The data type

of the pointers is character. The strings are not being assigned to the

array elements, but they are being pointed to by the array elements.

Figure 27.6 shows this array of pointers. The strings are stored

elsewhere in memory. Their actual locations are not critical because

each pointer points to the starting character. The strings waste

no data. Each string takes only as much memory as needed by the

string and its terminating zero. This gives the data its ragged-right

appearance.

Most of the table is wasted

Rows

Columns

Chapter 27 ♦ Pointers and Arrays

576

Figure 27.6. The array that points to each of the five strings.

To print the first string, you would use this cout:

cout << *names; // Prints George

To print the second string, you would use this cout:

cout << *(names+1); // Prints Michelle

Whenever you dereference any pointer element with the *

dereferencing operator, you access one of the strings in the array.

You can use a dereferenced element any place you use a string

constant or character array (with strcpy(), strcmp(), and so on).

TIP: Working with pointers to strings is much more efficient

than working directly with the strings. For instance, sorting a

list of strings takes much time if they are stored as a fully

justified table. Sorting strings pointed to by a pointer array is

much faster. You swap only pointers during the sort, not entire

strings.

Examples

1. Here is a full program that uses the pointer array with five

names. The for loop controls the cout function, printing each

name in the string data. Now you can see why learning

about pointer notation for arrays pays off!

// Filename: C27PTST1.CPP

// Prints strings pointed to by an array.

#include <iostream.h>

577

EXAMPLE
C++ By

void main()

{

 char *name[5]={ {“George”}, // Defines a ragged-edge

 {“Michelle”}, // array of pointers to

 {“Joe”}, // strings.

 {“Marcus”},

 {“Stephanie”} };

 int ctr;

 for (ctr=0; ctr<5; ctr++)

 { cout << “String #” << (ctr+1) <<

 “ is “ << *(name+ctr) << “\n”; }

 return;

}

The following is the output from this program:

String #1 is George

String #2 is Michelle

String #3 is Joe

String #4 is Marcus

String #5 is Stephanie

2. The following program stores the days of the week in an

array. When the user types a number from 1 to 7, the day of

the week that matches that number (with Sunday being 1)

displays by dereferencing the pointer referencing that string.

// Filename: C27PTST2.CPP

// Prints the day of the week based on an input value.

#include <iostream.h>

void main()

{

 char *days[] = {“Sunday”, // The seven separate sets

 “Monday”, // of braces are optional.

 “Tuesday”,

 “Wednesday”,

 “Thursday”,

 “Friday”,

 “Saturday”};

 int day_num;

Chapter 27 ♦ Pointers and Arrays

578

 do

 { cout << “What is a day number (from 1 to 7)? “;

 cin >> day_num;

 } while ((day_num<1) || (day_num>7)); // Ensures

 // an accurate number.

 day_num--; // Adjusts for subscript.

 cout << “The day is “ << *(days+day_num) << “\n”;

 return;

}

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between an array name and a pointer?

2. If you performed the following statement (assume ipointer

points to integers that take four bytes of memory),

ipointer += 2;

how many bytes are added to ipointer?

3. Which of the following are equivalent, assuming iary is an

integer array and iptr is an integer pointer pointing to the

start of the array?

a. iary and iptr

b. iary[1] and iptr+1

c. iary[3] and *(iptr + 3)

d. *iary and iary[0]

e. iary[4] and *iptr+4

4. Why is it more efficient to sort a ragged-edge character array

than a fully justified string array?

579

EXAMPLE
C++ By

5. Given the following array and pointer definition

int ara[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int *ip1, *ip2;

which of the following is allowed?

a. ip1 = ara;

b. ip2 = ip1 = &ara[3];

c. ara = 15;

d. *(ip2 + 2) = 15; // Assuming ip2 and ara are equal.

Review Exercises
1. Write a program to store your family members’ names in a

character array of pointers. Print the names.

2. Write a program that asks the user for 15 daily stock market

averages and stores those averages in a floating-point array.

Using only pointer notation, print the array forward and

backward. Again using only pointer notation, print the

highest and lowest stock market quotes in the list.

3. Modify the bubble sort shown in Chapter 24, “Array Pro-

cessing,” so that it sorts using pointer notation. Add this

bubble sort to the program in Exercise 2 to print the stock

market averages in ascending order

4. Write a program that requests 10 song titles from the user.

Store the titles in an array of character pointers (a ragged-

edge array). Print the original titles, print the alphabetized

titles, and print the titles in reverse alphabetical order (from

Z to A).

Chapter 27 ♦ Pointers and Arrays

580

Summary
You deserve a break! You now understand the foundation of

C++’s pointers and array notation. When you have mastered this

section, you are on your way to thinking in C++ as you design your

programs. C++ programmers know that C++’s arrays are pointers

in disguise, and they program them accordingly.

Being able to use ragged-edge arrays offers two advantages:

You can hold arrays of string data without wasting extra space, and

you can quickly change the pointers without having to move the

string data around in memory.

As you progress into advanced C++ concepts, you will appre-

ciate the time you spend mastering pointer notation. The next

chapter introduces a new topic called structures. Structures enable

you to store data in a more unified manner than simple variables

have allowed.

