
583

EXAMPLE
C++ By

28

Structures

Using structures, you have the ability to group data and work with

the grouped data as a whole. Business data processing uses the

concept of structures in almost every program. Being able to ma-

nipulate several variables as a single group makes your programs

easier to manage.

This chapter introduces the following concepts:

♦ Structure definitions

♦ Initializing structures

♦ The dot operator (.)

♦ Structure assignment

♦ Nested structures

This chapter is one of the last in the book to present new

concepts. The remainder of the book builds on the structure con-

cepts you learn in this chapter.

Chapter 28 ♦ Structures

584

Introduction to Structures
A structure is a collection of one or more variable types. As you

know, each element in an array must be the same data type, and you

must refer to the entire array by its name. Each element (called a

member) in a structure can be a different data type.

Suppose you wanted to keep track of your CD music collection.

You might want to track the following pieces of information about

each CD:

Title

Artist

Number of songs

Cost

Date purchased

There would be five members in this CD structure.

TIP: If you have programmed in other computer languages, or

if you have ever used a database program, C++ structures are

analogous to file records, and members are analogous to fields

in those records.

After deciding on the members, you must decide what data

type each member is. The title and artist are character arrays, the

number of songs is an integer, the cost is floating-point, and the date

is another character array. This information is represented like this:

Member Name Data Type

Title Character array of 25 characters

Artist Character array of 20 characters

Number of songs Integer

Cost Floating-point

Date purchased Character array of eight characters

Structures can have
members of different
data types.

585

EXAMPLE
C++ By

Each structure you define can have an associated structure

name called a structure tag. Structure tags are not required in most

cases, but it is generally best to define one for each structure in your

program. The structure tag is not a variable name. Unlike array

names, which reference the array as variables, a structure tag is

simply a label for the structure’s format.

You name structure tags yourself, using the same naming rules

for variables. If you give the CD structure a structure tag named

cd_collection, you are informing C++ that the tag called cd_collection

looks like two character arrays, followed by an integer, a floating-

point value, and a final character array.

A structure tag is actually a newly defined data type that you,

the programmer, define. When you want to store an integer, you do

not have to define to C++ what an integer is. C++ already recognizes

an integer. When you want to store a CD collection’s data, however,

C++ is not capable of recognizing what format your CD collection

takes. You have to tell C++ (using the example being described here)

that you need a new data type. That data type will be your structure

tag, called cd_collection in this example, and it looks like the struc-

ture previously described (two character arrays, integer, floating-

point, and character array).

NOTE: No memory is reserved for structure tags. A structure

tag is your own data type. C++ does not reserve memory for the

integer data type until you declare an integer variable. C++

does not reserve memory for a structure until you declare a

structure variable.

Figure 28.1 shows the CD structure, graphically representing

the data types in the structure. Notice that there are five members

and each member is a different data type. The entire structure is

called cd_collection because that is the structure tag.

A structure tag is
a label for the
structure’s format.

Chapter 28 ♦ Structures

586

Figure 28.1. The layout of the cd_collection structure.

NOTE: The mailing-list application in Appendix F uses a

structure to hold people’s names, addresses, cities, states, and

ZIP codes.

Examples

1. Suppose you were asked to write a program for a company’s

inventory system. The company had been using a card-file

inventory system to track the following items:

Item name

Quantity in stock

Quantity on order

Retail price

Wholesale price

This would be a perfect use for a structure containing five

members. Before defining the structure, you have to deter-

mine the data types of each member. After asking questions

about the range of data (you must know the largest item

name, and the highest possible quantity that would appear

on order to ensure your data types can hold the data), you

decide to use the following structure tag and data types:

587

EXAMPLE
C++ By

Member Data Type

Item name Character array of 20 characters

Quantity in stock long int

Quantity on order long int

Retail price double

Wholesale price double

2. Suppose the same company also wanted you to write a

program to keep track of their monthly and annual salaries

and to print a report at the end of the year that showed each

month’s individual salary and the total salary at the end of

the year.

What would the structure look like? Be careful! This type of

data probably does not need a structure. Because all the

monthly salaries must be the same data type, a floating-

point or a double floating-point array holds the monthly

salaries nicely without the complexity of a structure.

Structures are useful for keeping track of data that must be

grouped, such as inventory data, a customer’s name and

address data, or an employee data file.

Defining Structures
To define a structure, you must use the struct statement. The

struct statement defines a new data type, with more than one

member, for your program. The format of the struct statement is

struct [structure tag]

 {

 member definition;

 member definition;

 :

 member definition;

 } [one or more structure variables];

Chapter 28 ♦ Structures

588

As mentioned earlier, structure tag is optional (hence the

brackets in the format). Each member definition is a normal variable

definition, such as int i; or float sales[20]; or any other valid

variable definition, including variable pointers if the structure re-

quires a pointer as a member. At the end of the structure’s definition,

before the final semicolon, you can specify one or more structure

variables.

If you specify a structure variable, you request C++ to reserve

space for that variable. This enables C++ to recognize that the

variable is not integer, character, or any other internal data type.

C++ also recognizes that the variable must be a type that looks like

the structure. It might seem strange that the members do not reserve

storage, but they don’t. The structure variables do. This becomes

clear in the examples that follow.

Here is the way you declare the CD structure:

struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1, cd2, cd3;

Before going any further, you should be able to answer the

following questions about this structure:

♦ What is the structure tag?

♦ How many members are there?

♦ What are the member data types?

♦ What are the member names?

♦ How many structure variables are there?

♦ What are their names?

The structure tag is called cd_collection. There are five mem-

bers, two character arrays, an integer, a floating-point, and a charac-

ter array. The member names are title, artist, num_songs, price, and

date_purch. There are three structure variables—cd1, cd2, and cd3.

589

EXAMPLE
C++ By

TIP: Often, you can visualize structure variables as a card-file

inventory system. Figure 28.2 shows how you might keep your

CD collection in a 3-by-5 card file. Each CD takes one card

(represented by its structure variable), which contains the

information about that CD (the structure members).

Figure 28.2. Using a card-file CD inventory system.

If you had 1000 CDs, you would have to declare 1000 structure

variables. Obviously, you would not want to list that many structure

variables at the end of a structure definition. To help define struc-

tures for a large number of occurrences, you must define an array of
structures. Chapter 29, “Arrays of Structures,” shows you how to do

that. For now, concentrate on familiarizing yourself with structure

definitions.

Examples

1. Here is a structure definition of the inventory application

described earlier in this chapter.

Chapter 28 ♦ Structures

590

struct inventory

{

 char item_name[20];

 long int in_stock;

 long int order_qty;

 float retail;

 float wholesale;

} item1, item2, item3, item4;

Four inventory structure variables are defined. Each struc-

ture variable—item1, item2, item3, and item4—looks like the

structure.

2. Suppose a company wanted to track its customers and

personnel. The following two structure definitions would

create five structure variables for each structure. This ex-

ample, having five employees and five customers, is very

limited, but it shows how structures can be defined.

struct employees

{

 char emp_name[25]; // Employee’s full name.

 char address[30]; // Employee’s address.

 char city[10];

 char state[2];

 long int zip;

 double salary; // Annual salary.

} emp1, emp2, emp3, emp4, emp5;

struct customers

{

 char cust_name[25]; // Customer’s full name.

 char address[30]; // Customer’s address.

 char city[10];

 char state[2];

 long int zip;

 double balance; // Balance owed to company.

} cust1, cust2, cust3, cust4, cust5;

Each structure has similar data. Later in this chapter, you

learn how to consolidate similar member definitions by

creating nested structures.

591

EXAMPLE
C++ By

TIP: Put comments to the right of members in order to docu-

ment the purpose of the members.

Initializing Structure Data
There are two ways to initialize members of a structure. You

can initialize members when you declare a structure, and you can

initialize a structure in the body of the program. Most programs lend

themselves to the latter method, because you do not always know

structure data when you write your program.

Here is an example of a structure declared and initialized at the

same time:

struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1 = {“Red Moon Men”, “Sam and the Sneeds”,

 12, 11.95, “02/13/92”};

When first learning about structures, you might be tempted to

initialize members individually inside the structure, such as

char artist[20]=”Sam and the Sneeds”; // Invalid

You cannot initialize individual members because they are not

variables. You can assign only values to variables. The only struc-

ture variable in this structure is cd1. The braces must enclose the data

you initialize in the structure variables, just as they enclose data

when you initialize arrays.

This method of initializing structure variables becomes tedious

when there are several structure variables (as there usually are).

Putting the data in several variables, each set of data enclosed in

braces, becomes messy and takes too much space in your code.

You can define a
structure’s data when
you declare the
structure.

Chapter 28 ♦ Structures

592

More importantly, you usually do not even know the contents

of the structure variables. Generally, the user enters data to be stored

in structures, or you read them from a disk file.

A better approach to initializing structures is to use the dot
operator (.). The dot operator is one way to initialize individual

members of a structure variable in the body of your program. With

the dot operator, you can treat each structure member almost as if it

were a regular nonstructure variable.

The format of the dot operator is

structure_variable_name.member_name

A structure variable name must always precede the dot opera-

tor, and a member name must always appear after the dot operator.

Using the dot operator is easy, as the following examples show.

Examples

1. Here is a simple program using the CD collection structure

and the dot operator to initialize the structure. Notice the

program treats members as if they were regular variables

when combined with the dot operator.

Identify the program and include the necessary header file. Define
a CD structure variable with five members. Fill the CD structure
variable with data, then print it.

// Filename: C28ST1.CPP

// Structure initialization with the CD collection.

#include <iostream.h>

#include <string.h>

void main()

{

 struct cd_collection

 {

 char title[25];

 char artist[20];

 int num_songs;

 float price;

 char date_purch[9];

 } cd1;

Use the dot operator
to initialize members
of structures.

593

EXAMPLE
C++ By

 // Initialize members here.

 strcpy(cd1.title, “Red Moon Men”);

 strcpy(cd1.artist, “Sam and the Sneeds”);

 cd1.num_songs=12;

 cd1.price=11.95;

 strcpy(cd1.date_purch, “02/13/92”);

 // Print the data to the screen.

 cout << “Here is the CD information:\n\n”;

 cout << “Title: “ << cd1.title << “\n”;

 cout << “Artist: “ << cd1.artist << “\n”;

 cout << “Songs: “ << cd1.num_songs << “\n”;

 cout << “Price: “ << cd1.price << “\n”;

 cout << “Date purchased: “ << cd1.date_purch << “\n”;

 return;

}

Here is the output from this program:

Here is the CD information:

Title: Red Moon Men

Artist: Sam and the Sneeds

Songs: 12

Price: 11.95

Date purchased: 02/13/92

2. By using the dot operator, you can receive structure data

from the keyboard with any of the data-input functions you

know, such as cin, gets(), and get.

The following program asks the user for student informa-

tion. To keep the example reasonably short, only two stu-

dents are defined in the program.

// Filename: C28ST2.CPP

// Structure input with student data.

#include <iostream.h>

#include <string.h>

#include <iomanip.h>

#include <stdio.h>

Chapter 28 ♦ Structures

594

void main()

{

 struct students

 {

 char name[25];

 int age;

 float average;

 } student1, student2;

 // Get data for two students.

 cout << “What is first student’s name? “;

 gets(student1.name);

 cout << “What is the first student’s age? “;

 cin >> student1.age;

 cout << “What is the first student’s average? “;

 cin >> student1.average;

 fflush(stdin); // Clear input buffer for next input.

 cout << “\nWhat is second student’s name? “;

 gets(student2.name);

 cout << “What is the second student’s age? “;

 cin >> student2.age;

 cout << “What is the second student’s average? “;

 cin >> student2.average;

 // Print the data.

 cout << “\n\nHere is the student information you “ <<

 “entered:\n\n”;

 cout << “Student #1:\n”;

 cout << “Name: “ << student1.name << “\n”;

 cout << “Age: “ << student1.age << “\n”;

 cout << “Average: “ << setprecision(2) << student1.average

 << “\n”;

 cout << “\nStudent #2:\n”;

 cout << “Name: “ << student2.name << “\n”;

 cout << “Age: “ << student2.age << “\n”;

 cout << “Average: “ << student2.average << “\n”;

 return;

}

595

EXAMPLE
C++ By

Here is the output from this program:

What is first student’s name? Larry

What is the first student’s age? 14

What is the first student’s average? 87.67

What is second student’s name? Judy

What is the second student’s age? 15

What is the second student’s average? 95.38

Here is the student information you entered:

Student #1:

Name: Larry

Age: 14

Average: 87.67

Student #2:

Name: Judy

Age: 15

Average: 95.38

3. Structure variables are passed by copy, not by address as

arrays are. Therefore, if you fill a structure in a function, you

must return it to the calling function in order for the calling

function to recognize the structure, or use global structure

variables, which is generally not recommended.

TIP: A good solution to the local/global structure problem

is this: Define your structures globally without any structure

variables. Define all your structure variables locally to the

functions that need them. As long as your structure definition

is global, you can declare local structure variables from that

structure. All subsequent examples in this book use this method.

The structure tag plays an important role in the local/global

problem. Use the structure tag to define local structure

variables. The following program is similar to the previous

one. Notice the student structure is defined globally with no

Define structures
globally and
structure variables
locally.

Chapter 28 ♦ Structures

596

structure variables. In each function, local structure variables

are declared by referring to the structure tag. The structure

tag keeps you from having to redefine the structure mem-

bers every time you define a new structure variable.

// Filename: C28ST3.CPP

// Structure input with student data passed to functions.

#include <iostream.h>

#include <string.h>

#include <stdio.h>

#include <iomanip.h>

struct students fill_structs(struct students student_var);

void pr_students(struct students student_var);

struct students // A global structure.

 {

 char name[25];

 int age;

 float average;

 }; // No memory reserved.

void main()

{

 students student1, student2; // Defines two

 // local variables.

 // Call function to fill structure variables.

 student1 = fill_structs(student1); // student1

 // is passed by copy, so it must be

 // returned for main() to recognize it.

 student2 = fill_structs(student2);

 // Print the data.

 cout << “\n\nHere is the student information you”;

 cout << “ entered:\n\n”;

 pr_students(student1); // Prints first student’s data.

 pr_students(student2); // Prints second student’s data.

 return;

}

597

EXAMPLE
C++ By

struct students fill_structs(struct students student_var)

{

 // Get student’s data

 fflush(stdin); // Clears input buffer for next input.

 cout << “What is student’s name? “;

 gets(student_var.name);

 cout << “What is the student’s age? “;

 cin >> student_var.age;

 cout << “What is the student’s average? “;

 cin >> student_var.average;

 return (student_var);

}

void pr_students(struct students student_var)

{

 cout << “Name: “ << student_var.name << “\n”;

 cout << “Age: “ << student_var.age << “\n”;

 cout << “Average: “ << setprecision(2) <<

 student_var.average << “\n”;

 return;

}

The prototype and definition of the fill_structs() function

might seem complicated, but it follows the same pattern you

have seen throughout this book. Before a function name, you

must declare void or put the return data type if the function

returns a value. fill_structs() does return a value, and the

type of value it returns is struct students.

4. Because structure data is nothing more than regular vari-

ables grouped together, feel free to calculate using structure

members. As long as you use the dot operator, you can treat

structure members just as you would other variables.

The following example asks for a customer’s balance and

uses a discount rate, included in the customer’s structure, to

calculate a new balance. To keep the example short, the

structure’s data is initialized at variable declaration time.

This program does not actually require structures because

only one customer is used. Individual variables could have

Chapter 28 ♦ Structures

598

been used, but they don’t illustrate the concept of calculating

with structures.

// Filename: C28CUST.CPP

// Updates a customer balance in a structure.

#include <iostream.h>

#include <iomanip.h>

struct customer_rec

 {

 char cust_name[25];

 double balance;

 float dis_rate;

 } ;

void main()

{

 struct customer_rec customer = {“Steve Thompson”,

 431.23, .25};

 cout << “Before the update, “ << customer.cust_name;

 cout << “ has a balance of $” << setprecision(2) <<

 customer.balance << “\n”;

 // Update the balance

 customer.balance *= (1.0-customer.dis_rate);

 cout << “After the update, “ << customer.cust_name;

 cout << “ has a balance of $” << customer.balance << “\n”;

 return;

}

5. You can copy the members of one structure variable to the

members of another as long as both structures have the same

format. Some older versions of C++ require you to copy each

member individually when you want to copy one structure

variable to another, but AT&T C++ makes duplicating

structure variables easy.

599

EXAMPLE
C++ By

Being able to copy one structure variable to another will

seem more meaningful when you read Chapter 29, “Arrays

of Structures.”

The following program declares three structure variables,

but initializes only the first one with data. The other two are

then initialized by assigning the first structure variable to

them.

// Filename: C28STCPY.CPP

// Demonstrates assigning one structure to another.

#include <iostream.h>

#include <iomanip.h>

struct student

{

 char st_name[25];

 char grade;

 int age;

 float average;

};

void main()

{

 student std1 = {“Joe Brown”, ‘A’, 13, 91.4};

 struct student std2, std3; // Not initialized

 std2 = std1; // Copies each member of std1

 std3 = std1; // to std2 and std3.

 cout << “The contents of std2:\n”;

 cout << std2.st_name << “ “ << std2.grade << “ “;

 cout << std2.age << “ “ << setprecision(1) << std2.average

 << “\n\n”;

 cout << “The contents of std3:\n”;

 cout << std3.st_name << “ “ << std3.grade << “ “;

 cout << std3.age << “ “ << std3.average << “\n”;

 return;

}

Chapter 28 ♦ Structures

600

Here is the output from the program:

The contents of std2

Joe Brown, A, 13, 91.4

The contents of std3

Joe Brown, A, 13, 91.4

Notice each member of std1 was assigned to std2 and std3

with two single assignments.

Nested Structures
C++ gives you the ability to nest one structure definition in

another. This saves time when you are writing programs that use

similar structures. You have to define the common members only

once in their own structure and then use that structure as a member

in another structure.

The following two structure definitions illustrate this point:

struct employees

{

 char emp_name[25]; // Employee’s full name.

 char address[30]; // Employee’s address.

 char city[10];

 char state[2];

 long int zip;

 double salary; // Annual salary.

};

struct customers

{

 char cust_name[25]; // Customer’s full name.

 char address[30]; // Customer’s address.

 char city[10];

 char state[2];

 long int zip;

 double balance; // Balance owed to company.

};

601

EXAMPLE
C++ By

These structures hold different data. One structure is for em-

ployee data and the other holds customer data. Even though the data

should be kept separate (you don’t want to send a customer a

paycheck!), the structure definitions have much overlap and can be

consolidated by creating a third structure.

Suppose you created the following structure:

struct address_info

{

 char address[30]; // Common address information.

 char city[10];

 char state[2];

 long int zip;

};

This structure could then be used as a member in the other

structures like this:

struct employees

{

 char emp_name[25]; // Employee’s full name.

 address_info e_address; // Employee’s address.

 double salary; // Annual salary.

};

struct customers

{

 char cust_name[25]; // Customer’s full name.

 address_info c_address; // Customer’s address.

 double balance; // Balance owed to company.

};

It is important to realize there are a total of three structures, and

that they have the tags address_info, employees, and customers. How

many members does the employees structure have? If you answered

three, you are correct. There are three members in both employees and

customers. The employees structure has the structure of a character

array, followed by the address_info structure, followed by the double

floating-point member, salary.

Figure 28.3 shows how these structures look.

Chapter 28 ♦ Structures

602

Figure 28.3. Defining a nested structure.

When you define a structure, that structure becomes a new data

type in the program and can be used anywhere a data type (such as

int, float, and so on) can appear.

You can assign members values using the dot operator. To

assign the customer balance a number, type something like this:

customer.balance = 5643.24;

The nested structure might seem to pose a problem. How can

you assign a value to one of the nested members? By using the dot

operator, you must nest the dot operator just as you nest the

structure definitions. You would assign a value to the customer’s

ZIP code like this:

customer.c_address.zip = 34312;

603

EXAMPLE
C++ By

To assign a value to the employee’s ZIP code, you would do

this:

employee.e_address.zip = 59823;

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between structures and arrays?

2. What are the individual elements of a structure called?

3. What are the two ways to initialize members of a structure?

4. Do you pass structures by copy or by address?

5. True or false: The following structure definition reserves

storage in memory:

struct crec

 { char name[25];

 int age;

 float sales[5];

 long int num;

 }

6. Should you declare a structure globally or locally?

7. Should you declare a structure variable globally or locally?

8. How many members does the following structure declara-

tion contain?

struct item

 {

 int quantity;

 part_rec item_desc;

 float price;

 char date_purch[8];

 };

Chapter 28 ♦ Structures

604

Review Exercises
1. Write a structure in a program that tracks a video store’s

tape inventory. Be sure the structure includes the tape title,

the length of the tape (in minutes), the initial purchase price

of the tape, the rental price of the tape, and the date of the

movie’s release.

2. Write a program using the structure you declared in Exer-

cise 1. Define three structure variables and initialize them

when you declare the variables with data. Print the data to

the screen.

3. Write a teacher’s program to keep track of 10 students’

names, ages, letter grades, and IQs. Use 10 different struc-

ture variable names and retrieve the data for the students in

a for loop from the keyboard. Print the data on the printer

when the teacher finishes entering the information for all the

students.

Summary
With structures, you have the ability to group data in more

flexible ways than with arrays. Your structures can contain mem-

bers of different data types. You can initialize the structures either

at declaration time or during the program with the dot operator.

Structures become even more powerful when you declare

arrays of structure variables. Chapter 29, “Arrays of Structures,”

shows you how to declare several structure variables without giving

them each a different name. This enables you to step through

structures much quicker with loop constructs.

