
353

EXAMPLE
C++ By

17

Variable Scope

The concept of variable scope is most important when you write

functions. Variable scope determines which functions recognize

certain variables. If a function recognizes a variable, the variable is

visible to that function. Variable scope protects variables in one

function from other functions that might overwrite them. If a

function doesn’t need access to a variable, that function shouldn’t be

able to see or change the variable. In other words, the variable

should not be “visible” to that particular function.

This chapter introduces you to

♦ Global and local variables

♦ Passing arguments

♦ Automatic and static variables

♦ Passing parameters

The previous chapter introduced the concept of using a differ-

ent function for each task. This concept is much more useful when

you learn about local and global variable scope.

Chapter 17 ♦ Variable Scope

354

Global Versus Local
Variables

If you have programmed only in BASIC, the concept of local

and global variables might be new to you. In many interpreted

versions of BASIC, all variables are global, meaning the entire

program knows each variable and has the capability to change any

of them. If you use a variable called SALES at the top of the program,

even the last line in the program can use SALES. (If you don’t know

BASIC, don’t despair—there will be one less habit you have to

break!)

Global variables can be dangerous. Parts of a program can

inadvertently change a variable that shouldn’t be changed. For

example, suppose you are writing a program that keeps track of a

grocery store’s inventory. You might keep track of sales percent-

ages, discounts, retail prices, wholesale prices, produce prices,

dairy prices, delivered prices, price changes, sales tax percentages,

holiday markups, post-holiday markdowns, and so on.

The huge number of prices in such a system is confusing. When

writing a program to keep track of every price, it would be easy to

mistakenly call both the dairy prices d_prices and the delivered

prices d_prices. Either C++ will not enable you to do this (you can’t

define the same variable twice) or you will overwrite a value used

for something else. Whatever happens, keeping track of all these

different—but similarly named—prices makes this program con-

fusing to write.

Global variables can be dangerous because code can inadvert-

ently overwrite a variable initialized elsewhere in the program. It is

better to make every variable local in your programs. Then, only

functions that should be able to change the variables can do so.

Local variables can be seen (and changed) only from the

function in which they are defined. Therefore, if a function defines

a variable as local, that variable’s scope is protected. The variable

cannot be used, changed, or erased by any other function without

special programming that you learn about shortly.

If you use only one function, main(), the concept of local and

global is academic. You know from Chapter 16, “Writing C++

Functions,” however, that single-function programs are not recom-

mended. It is best to write modular, structured programs made up

Global variables are
visible across many
program functions.

Local variables are
visible only in the
block where they are
defined.

355

EXAMPLE
C++ By

of many smaller functions. Therefore, you should know how to

define variables as local to only those functions that use them.

Defining Variable Scope

When you first learned about variables in Chapter 4, “Variables

and Literals,” you learned you can define variables in two places:

♦ Before they are used inside a function

♦ Before a function name, such as main()

All examples in this book have declared variables with the first

method. You have yet to see an example of the second method.

Because most these programs have consisted entirely of a single

main() function, there has been no reason to differentiate the two

methods. It is only after you start using several functions in one

program that these two variable definition methods become critical.

The following rules, specific to local and global variables, are

important:

♦ A variable is local if and only if you define it after the opening

brace of a block, usually at the top of a function.

♦ A variable is global if and only if you define it outside a

function.

All variables you have seen so far have been local. They have all

been defined immediately after the opening braces of main(). There-

fore, they have been local to main(), and only main() can use them.

Other functions have no idea these variables even exist because they

belong to main() only. When the function (or block) ends, all its local

variables are destroyed.

TIP: All local variables disappear (lose their definition) when

their block ends.

Global variables are visible (“known”) from their point of

definition to the end of the program. If you define a global variable,

any line throughout the rest of the program—no matter how many

functions and code lines follow it—is able to use that global variable.

Global variables are
visible from their
definition through
the remainder of the
program.

Chapter 17 ♦ Variable Scope

356

Examples

1. The following section of code defines two local variables,

i and j.

main()

{

 int i, j; // Local because they’re

 // defined after the brace.

 // Rest of main() goes here.

}

These variables are visible to main() and not to any other

function that might follow or be called by main().

2. The following section of code defines two global variables, g

and h.

#include <iostream.h>

int g, h; // Global because they’re

 // defined before a function.

main()

{

 // main()’s code goes here.

}

It doesn’t matter whether your #include lines go before or

after global variable declarations.

3. Global variables can appear before any function. In the

following program, main() uses no variables. However, both

of the two functions after main() can use sales and profit

because these variables are global.

// Filename: C17GLO.CPP

// Program that contains two global variables.

#include <iostream.h>

do_fun();

third_fun(); // Prototype discussed later.

main()

{

 cout << “No variables defined in main() \n\n”;

 do_fun(); // Call the first function.

357

EXAMPLE
C++ By

 return 0;

}

float sales, profit; // Two global variables.

do_fun()

{

 sales = 20000.00; // This variable is visible

 // from this point down.

 profit = 5000.00; // As is this one. They are

 // both global.

 cout << “The sales in the second function are “ <<

 sales << “\n”;

 cout << “The profit in the second function is “ <<

 profit << “\n\n”;

 third_fun(); // Call the third function to

 // show that globals are visible.

 return 0;

}

third_fun()

{

 cout << “In the third function: \n”;

 cout << “The sales in the third function are “ <<

 sales << “\n”;

 cout << “The profit in the third function is “ <<

 profit << “\n”;

 // If sales and profit were local, they would not be

 // visible by more than one function.

 return 0;

}

Notice that the main() function can never use sales and profit

because they are not visible to main()—even though they are

global. Remember, global variables are visible only from

their point of definition downward in the program. State-

ments that appear before global variable definitions can-

not use those variables. Here is the result of running this

program.

Chapter 17 ♦ Variable Scope

358

No variables defined in main()

The sales in the second function are 20000

The profit in the second function is 5000

In the third function:

The sales in the third function are 20000

The profit in the third function is 5000

TIP: Declare all global variables at the top of your pro-

grams. Even though you can define them later (between any

two functions), you can find them faster if you declare them at

the top.

4. The following program uses both local and global variables.

It should now be obvious to you that j and p are local and i

and z are global.

// Filename: C17GLLO.CPP

// Program with both local and global variables.

// Local Variables Global Variables

// j, p i, z

#include <iostream.h>

pr_again(); // Prototype

int i = 0; // Global variable because it’s

 // defined outside main().

main()

{

 float p ; // Local to main() only.

 p = 9.0; // Puts value in global variable.

 cout << i << “, “ << p << “\n”; // Prints global i

 // and local p.

 pr_again(); // Calls next function.

 return 0; // Returns to DOS.

 }

359

EXAMPLE
C++ By

float z = 9.0; // Global variable because it’s

 // defined before a function.

pr_again()

{

 int j = 5; // Local to only pr_again().

 cout << j << “, “ << z; // This can’t print p!.

 cout << “, “ << i << “\n”;

 return 0; // Return to main().

 }

Even though j is defined in a function that main() calls, main()

cannot use j because j is local to pr_again(). When pr_again()

finishes, j is no longer defined. The variable z is global from

its point of definition down. This is why main() cannot print

z. Also, the function pr_again() cannot print p because p is

local to main() only.

Make sure you can recognize local and global variables

before you continue. A little study here makes the rest of this

chapter easy to understand.

5. Two variables can have the same name, as long as they are

local to two different functions. They are distinct variables,

even though they are named identically.

The following short program uses two variables, both

named age. They have two different values, and they are

considered to be two different variables. The first age is local

to main(), and the second age is local to get_age().

// Filename: C17LOC1.CPP

// Two different local variables with the same name.

#include <iostream.h>

get_age(); // Prototype

main()

{

 int age;

 cout << “What is your age? “;

 cin >> age;

 get_age(); // Call the second function.

 cout << “main()’s age is still “ << age << “\n”;

Chapter 17 ♦ Variable Scope

360

 return 0;

}

get_age()

{

 int age; // A different age. This one

 // is local to get_age().

 cout << “What is your age again? “;

 cin >> age;

 return 0;

}

The output of this program follows. Study this output

carefully. Notice that main()’s last cout does not print the

newly changed age. Rather, it prints the age known to

main()—the age that is local to main(). Even though they are

named the same, main()’s age has nothing to do with

get_age()’s age. They might as well have two different vari-

able names.

What is your age? 28

What is your age again? 56

main()’s age is still 28

You should be careful when naming variables. Having two

variables with the same name is misleading. It would be

easy to become confused while changing this program later.

If these variables truly have to be separate, name them

differently, such as old_age and new_age, or ag1 and ag2. This

helps you remember that they are different.

6. There are a few times when overlapping local variable

names does not add confusion, but be careful about overdo-

ing it. Programmers often use the same variable name as the

counter variable in a for loop. For example, the two local

variables in the following program have the same name.

// Filename: C17LOC2.CPP

// Using two local variables with the same name

Variables local to
main() cannot be
used in another
function that
main() calls.

361

EXAMPLE
C++ By

// as counting variables.

#include <iostream.h>

do_fun(); // Prototype

main()

{

 int ctr; // Loop counter.

 for (ctr=0; ctr<=10; ctr++)

 { cout << “main()’s ctr is “ << ctr << “\n”; }

 do_fun(); // Call second function.

 return 0;

}

do_fun()

{

 int ctr;

 for (ctr=10; ctr>=0; ctr--)

 { cout << “do_fun()’s ctr is “ << ctr << “\n”; }

 return 0; // Return to main().

}

Although this is a nonsense program that simply prints 0

through 10 and then prints 10 through 0, it shows that using

ctr for both function names is not a problem. These variables

do not hold important data that must be processed; rather,

they are for loop-counting variables. Calling them both ctr

leads to little confusion because their use is limited to con-

trolling for loops. Because a for loop initializes and incre-

ments variables, the one function never relies on the other

function’s ctr to do anything.

7. Be careful about creating local variables with the same name

in the same function. If you define a local variable early in a

function and then define another local variable with the

same name inside a new block, C++ uses only the innermost

variable, until its block ends.

The following example helps clarify this confusing problem.

The program contains one function with three local vari-

ables. See if you can find these three variables.

Chapter 17 ♦ Variable Scope

362

// Filename: C17MULI.CPP

// Program with multiple local variables called i.

#include <iostream.h>

main()

{

 int i; // Outer i

 i = 10;

 { int i; // New block’s i

 i = 20; // Outer i still holds a 10.

 cout << i << “ “ << i << “\n”; // Prints 20 20.

 { int i; // Another new block and local variable.

 i = 30; // Innermost i only.

 cout << i << “ “ << i <<

 “ “ << i << “\n”; // Prints 30 30 30.

 } // Innermost i is now gone forever.

 } // Second i is gone forever (its block ended).

 cout << i << “ “ << i << “ “ <<

 i << “\n”; // Prints 10 10 10.

 return 0;

} // main() ends and so do its variables.

All local variables are local to the block in which they are

defined. This program has three blocks, each one nested

within another. Because you can define local variables

immediately after an opening brace of a block, there are

three distinct i variables in this program.

The local i disappears completely when its block ends (when

the closing brace is reached). C++ always prints the variable

that it interprets as the most local—the one that resides

within the innermost block.

Use Global Variables Sparingly

You might be asking yourself, “Why do I have to understand

global and local variables?” At this point, that is an understandable

363

EXAMPLE
C++ By

question, especially if you have been programming mostly in

BASIC. Here is the bottom line: Global variables can be dangerous.
Code can inadvertently overwrite a variable that was initialized in

another place in the program. It is better to have every variable in

your program be local to the function that has to access it.
Read the last sentence again. Even though you now know how

to make variables global, you should avoid doing so! Try to never

use another global variable. It might seem easier to use global

variables when you write programs having more than one function:

If you make every variable used by every function global, you never

have to worry whether one is visible or not to any given function. On

the other hand, a function can accidentally change a global variable

when that was not your intention. If you keep variables local only to

functions that need them, you protect their values, and you also keep

your programs fully modular.

The Need for Passing Variables

You just learned the difference between local and global vari-

ables. You saw that by making your variables local, you protect their

values because the function that sees the variable is the only one that

can modify it.

What do you do, however, if you have a local variable you want

to use in two or more functions? In other words, you might need a

variable to be both added from the keyboard in one function and

printed in another function. If the variable is local only to the first

function, how can the second one access it?

You have two solutions if more than one function has to share

a variable. One, you can declare the variable globally. This is not a

good idea because you want only those two functions to have access

to the variable, but all functions have access to it when it’s global. The

other alternative—and the better one by far—is to pass the local

variable from one function to another. This has a big advantage: The

variable is only known to those two functions. The rest of the

program still has no access to it.

Chapter 17 ♦ Variable Scope

364

CAUTION: Never pass a global variable to a function. There

is no reason to pass global variables anyway because they are

already visible to all functions.

When you pass a local variable from one function to another,

you pass an argument from the first function to the next. You can pass

more than one argument (variable) at a time, if you want several

local variables to be sent from one function to another. The receiving

function receives a parameter (variable) from the function that sends

it. You shouldn’t worry too much about what you call them—either

arguments or parameters. The important thing to remember is that

you are sending local variables from one function to another.

NOTE: You have already passed arguments to parameters

when you passed data to the cout operator. The literals, vari-

ables, and expressions in the cout parentheses are arguments.

The built-in cout function receives these values (called param-

eters on the receiving end) and displays them.

A little more terminology is needed before you see some

examples. When a function passes an argument, it is called the

calling function. The function that receives the argument (called a

parameter when it is received) is called the receiving function. Figure

17.1 explains these terms.

You pass an
argument when you
pass one local
variable to another
function.

Figure 17.1. The calling and receiving functions.

To pass a local variable from one function to another, you must

place the local variable in parentheses in both the calling func-

tion and the receiving function. For example, the local and global

If a function name
has empty
parentheses, nothing
is being passed to it.

365

EXAMPLE
C++ By

examples presented earlier did not pass local variables from main()

to do_fun(). If a function name has empty parentheses, nothing is

being passed to it. Given this, the following line passes two vari-

ables, total and discount, to a function called do_fun().

do_fun(total, discount);

It is sometimes said that a variable or function is defined. This

has nothing to do with the #define preprocessor directive, which

defines literals. You define variables with statements such as the

following:

int i, j;

int m=9;

float x;

char ara[] = “Tulsa”;

These statements tell the program that you need these variables

to be reserved. A function is defined when the C++ compiler reads

the first statement in the function that describes the name and when

it reads any variables that might have been passed to that function

as well. Never follow a function definition with a semicolon, but

always follow the statement that calls a function with a semicolon.

NOTE: To some C++ purists, a variable is only declared when

you write int i; and only truly defined when you assign it a

value, such as i=7;. They say that the variable is both declared

and defined when you declare the variable and assign it a value

at the same time, such as int i=7;.

The following program contains two function definitions,

main() and pr_it().

To practice passing a variable to a function, declare i as an integer variable
and make it equal to five. The passing (or calling) function is main(), and
the receiving function is pr_it(). Pass the i variable to the pr_it()
function, then go back to main().

Chapter 17 ♦ Variable Scope

366

main() // The main() function definition.

{

 int i=5; // Defines an integer variable.

 pr_it(i); // Calls the pr_it().

 // function and passes it i.

 return 0; // Returns to the operating system.

}

pr_it(int i) // The pr_it() function definition.

{

 cout << i << “\n”; // Calls the cout operator.

 return 0; // Returns to main().

}

Because a passed parameter is treated like a local variable in the

receiving function, the cout in pr_it() prints a 5, even though the

main() function initialized this variable.

When you pass arguments to a function, the receiving function

is not aware of the data types of the incoming variables. Therefore,

you must include each parameter’s data type in front of the

parameter’s name. In the previous example, the definition of pr_it()

(the first line of the function) contains the type, int, of the incoming

variable i. Notice that the main() calling function does not have to

indicate the variable type. In this example, main() already knows the

type of variable i (an integer); only pr_it() has to know that i is an

integer.

TIP: Always declare the parameter types in the receiving

function. Precede each parameter in the function’s parentheses

with int, float, or whatever each passed variable’s data type is.

Examples

1. Here is a main() function that contains three local variables.

main() passes one of these variables to the first function and

two of them to the second function.

367

EXAMPLE
C++ By

// Filename: C17LOC3.CPP

// Pass three local variables to functions.

#include <iostream.h>

#include <iomanip.h>

pr_init(char initial); // Prototypes discussed later.

pr_other(int age, float salary);

main()

{

 char initial; // Three variables local to

 // main().

 int age;

 float salary;

 // Fill these variables in main().

 cout << “What is your initial? “;

 cin >> initial;

 cout << “What is your age? “;

 cin >> age;

 cout << “What is your salary? “;

 cin >> salary;

 pr_init(initial); // Call pr_init() and

 // pass it initial.

 pr_other(age, salary); // Call pr_other() and

 // pass it age and salary.

 return 0;

}

pr_init(char initial) // Never put a semicolon in

 // the function definition.

{

 cout << “Your initial is “ << initial << “\n”;

 return 0; // Return to main().

}

pr_other(int age, float salary) // Must type both parameters.

{

 cout << “You look young for “ << age << “\n”;

 cout << “And “ << setprecision(2) << salary <<

Chapter 17 ♦ Variable Scope

368

 “ is a LOT of money!”;

 return 0; // Return to main().

}

2. A receiving function can contain its own local variables.

As long as the names are not the same, these local variables

do not conflict with the passed ones. In the following pro-

gram, the second function receives a passed variable from

main() and defines its own local variable called price_per.

// Filename: C17LOC4.CPP

// Second function has its own local variable.

#include <iostream.h>

#include <iomanip.h>

compute_sale(int gallons); // Prototypes discussed later.

main()

{

 int gallons;

 cout << “Richard’s Paint Service \n”;

 cout << “How many gallons of paint did you buy? “;

 cin >> gallons; // Get gallons in main().

 compute_sale(gallons); // Compute total in function.

 return 0;

}

compute_sale(int gallons)

{

 float price_per = 12.45; // Local to compute_sale().

 cout << “The total is “ << setprecision(2) <<

 (price_per*(float)gallons) << “\n”;

 // Had to type cast gallons because it was integer.

 return 0; // Return to main().

}

3. The following sample code lines test your skill at recog-

nizing calling functions and receiving functions. Being able

to recognize the difference is half the battle of understanding

them.

369

EXAMPLE
C++ By

do_it()

The preceding fragment must be the first line of a new

function because it does not end with a semicolon.

do_it2(sales);

This line calls a function called do_it2(). The calling function

passes the variable called sales to do_it2().

pr_it(float total)

The preceding line is the first line of a function that receives

a floating-point variable from another function that called it.

All receiving functions must specify the type of each variable

being passed.

pr_them(float total, int number)

This is the first line of a function that receives two vari-

ables—one is a floating-point variable and the other is an

integer. This line cannot be calling the function pr_them

because there is no semicolon at the end of the line.

Automatic Versus Static
Variables

The terms automatic and static describe what happens to local

variables when a function returns to the calling procedure. By

default, all local variables are automatic, meaning that they are

erased when their function ends. You can designate a variable as

automatic by prefixing its definition with the term auto. The auto

keyword is optional with local variables because they are automatic

be default.

The two statements after main()’s opening brace declare auto-

matic local variables:

main()

{

 int i;

 auto float x;

 // Rest of main() goes here.

Chapter 17 ♦ Variable Scope

370

Because auto is the default, you did not have to include the term

auto with x.

NOTE: C++ programmers rarely use the auto keyword with

local variables because they are automatic by default.

The opposite of an automatic variable is a static variable. All

global variables are static and, as mentioned, all static variables

retain their values. Therefore, if a local variable is static, it too retains

its value when its function ends—in case the function is called a

second time. To declare a variable as static, place the static keyword

in front of the variable when you define it. The following code

section defines three variables, i, j, and k. The variable i is automatic,

but j and k are static.

my_fun() // Start of new function definition.

{

 int i;

 static j=25; // Both j and k are static variables.

 static k=30;

Always assign an initial value to a static variable when you

declare it, as shown here in the last two lines. This initial value is

placed in the static variable only the first time my_fun() executes. If

you don’t assign a static variable an initial value, C++ initializes it to

zero.

TIP: Static variables are good to use when you write functions

that keep track of a count or add to a total. If the counting or

totaling variables were local and automatic, their values would

disappear when the function finished—destroying the totals.

Automatic variables
are local and
disappear when their
function ends.

If local variables are
static, their values
remain in case the
function is called
again.

371

EXAMPLE
C++ By

Automatic and Static Rules for Local Variables

Local automatic variables disappear when their block ends. All

local variables are automatic by default. You can prefix a

variable (when you define it) with the auto keyword, or you can

omit it; the variable is still automatic and its value is destroyed

when its local block ends.

Local static variables do not lose their values when their

function ends. They remain local to that function. When the

function is called after the first time, the static variable’s value

is still in place. You declare a static variable by placing the

static keyword before the variable’s definition.

Examples

1. Consider this program:

// Filename: C17STA1.CPP

// Tries to use a static variable

// without a static declaration.

#include <iostream.h>

triple_it(int ctr);

main()

{

 int ctr; // Used in the for loop to

 // call a function 25 times.

 for (ctr=1; ctr<=25; ctr++)

 { triple_it(ctr); } // Pass ctr to a function

 // called triple_it().

 return 0;

}

triple_it(int ctr)

{

 int total=0, ans; // Local automatic variables.

Chapter 17 ♦ Variable Scope

372

 // Triples whatever value is passed to it

 // and adds the total.

 ans = ctr * 3; // Triple number passed.

 total += ans; // Add triple numbers as this is called.

 cout << “The number “ << ctr << “ multiplied by 3 is “

 << ans << “\n”;

 if (total > 300)

 { cout << “The total of triple numbers is over 300 \n”; }

 return 0;

}

This is a nonsense program that doesn’t do much, yet you

might sense something is wrong. The program passes num-

bers from 1 to 25 to the function called triple_it. The function

triples the number and prints it.

The variable called total is initially set to 0. The idea here is to

add each tripled number and print a message when the total

is larger than 300. However, the cout never executes. For each

of the 25 times that this subroutine is called, total is reset to 0.

The total variable is an automatic variable, with its value

erased and initialized every time its procedure is called. The

next example corrects this.

2. If you want total to retain its value after the procedure ends,

you must make it static. Because local variables are automatic

by default, you have to include the static keyword to over-

ride this default. Then the value of the total variable is

retained each time the subroutine is called.

The following corrects the mistake in the previous program.

// Filename: C17STA2.CPP

// Uses a static variable with the static declaration.

#include <iostream.h>

triple_it(int ctr);

main()

373

EXAMPLE
C++ By

{

 int ctr; // Used in the for loop to

 // call a function 25 times.

 for (ctr=1; ctr<=25; ctr++)

 { triple_it(ctr); } // Pass ctr to a function

 // called triple_it().

 return 0;

}

triple_it(int ctr)

{

 static int total=0; // Local and static

 int ans; // Local and automatic

 // total is set to 0 only the first time this

 // function is called.

 // Triples whatever value is passed to it and adds

 // the total.

 ans = ctr * 3; // Triple number passed.

 total += ans; // Add triple numbers as this is called.

 cout << “The number “ << ctr << “ multiplied by 3 is “

 << ans << “\n”;

 if (total > 300)

 { cout << “The total of triple numbers is over 300 \n”; }

 return 0;

}

This program’s output follows. Notice that the function’s

cout is triggered, even though total is a local variable. Be-

cause total is static, its value is not erased when the function

finishes. When main() calls the function a second time, total’s

previous value (at the time you left the routine) is still there.

The number 1 multiplied by 3 is 3

The number 2 multiplied by 3 is 6

The number 3 multiplied by 3 is 9

The number 4 multiplied by 3 is 12

Chapter 17 ♦ Variable Scope

374

The number 5 multiplied by 3 is 15

The number 6 multiplied by 3 is 18

The number 7 multiplied by 3 is 21

The number 8 multiplied by 3 is 24

The number 9 multiplied by 3 is 27

The number 10 multiplied by 3 is 30

The number 11 multiplied by 3 is 33

The number 12 multiplied by 3 is 36

The number 13 multiplied by 3 is 39

The number 14 multiplied by 3 is 42

The number 15 multiplied by 3 is 45

The number 16 multiplied by 3 is 48

The number 17 multiplied by 3 is 51

The number 18 multiplied by 3 is 54

The number 19 multiplied by 3 is 57

The number 20 multiplied by 3 is 60

The number 21 multiplied by 3 is 63

The number 22 multiplied by 3 is 66

The number 23 multiplied by 3 is 69

The number 24 multiplied by 3 is 72

The number 25 multiplied by 3 is 75

This does not mean that local static variables become global.

The main program cannot refer, use, print, or change total

because it is local to the second function. Static simply

means that the local variable’s value is still there if the

program calls the function again.

Three Issues of Parameter
Passing

To have a complete understanding of programs with several

functions, you have to learn three additional concepts:

♦ Passing arguments (variables) by value (also called “by

copy”)

♦ Passing arguments (variables) by address (also called “by

reference”)

♦ Returning values from functions

375

EXAMPLE
C++ By

The first two concepts deal with the way local variables are

passed and received. The third concept describes how receiving

functions send values back to the calling functions. Chapter 18,

“Passing Values,” concludes this discussion by explaining these

three methods for passing parameters and returning values.

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: A function should always include a return

statement as its last command, even though return is not

required.

2. When a local variable is passed, is it called an argument or a

parameter?

3. True or false: A function that is passed variables from an-

other function cannot also have its own local variables.

4. What must appear inside the receiving function’s parenthe-

ses, other than the variables passed to it?

5. If a function keeps track of a total or count every time it is

called, should the counting or totaling variable be automatic

or static?

6. When would you pass a global variable to a function? (Be

careful—this might be a trick question!)

7. How many arguments are there in the following statement?

printf(“The rain has fallen %d inches.”, rainf);

Review Exercises
1. Write a program that asks, in main(), for the age of the user’s

dog. Write a second function called people() that computes

the dog’s age in human years (by multiplying the dog’s age

by seven).

Chapter 17 ♦ Variable Scope

376

2. Write a function that counts the number of times it is called.

Name the function count_it(). Do not pass it anything. In the

body of count_it(), print the following message:

The number of times this function has been called is: ##

where ## is the number. (Hint: Because the variable must be

local, make it static and initialize it to zero when you first

define it.)

3. The following program contains several problems. Some of

these problems produce errors. One problem is not an error,

but a bad location for a variable declaration. (Hint: Find all

the global variables.) See if you can spot some of the prob-

lems, and rewrite the program so it works better.

// Filename: C17BAD.CPP

// Program with bad uses of variable declarations.

#include <iostream.h>

#define NUM 10

do_var_fun(); // Prototypes discussed later.

char city[] = “Miami”;

int count;

main()

{

 int abc;

 count = NUM;

 abc = 5;

 do_var_fun();

 cout << abc << “ “ << count << “ “ << pgm_var << “ “

 << xyz;

 return 0;

}

int pgm_var = 7;

do_var_fun()

377

EXAMPLE
C++ By

{

 char xyz = ‘A’;

 xyz = ‘b’;

 cout << xyz << “ “ << pgm_var << “ “ abc << “ “ << city;

 return 0;

}

Summary
Parameter passing is necessary because local variables are

better than global. Local variables are protected in their own rou-

tines, but sometimes they must be shared with other routines. If

local data are to remain in those variables (in case the function is

called again in the same program), the variables should be static

because otherwise their automatic values disappear.

Most the information in this chapter becomes more obvious as

you use functions in your own programs. Chapter 18, “Passing

Values,” covers the actual passing of parameters in more detail and

shows you two different ways to pass them.

Chapter 17 ♦ Variable Scope

378

