
379

EXAMPLE
C++ By

18

Passing Values

C++ passes variables between functions using two different meth-

ods. The one you use depends on how you want the passed variables

to be changed. This chapter explores these two methods. The con-

cepts discussed here are not new to the C++ language. Other

programming languages, such as Pascal, FORTRAN, and QBasic,

pass parameters using similar techniques. A computer language

must have the capability to pass information between functions

before it can be called truly structured.

This chapter introduces you to the following:

♦ Passing variables by value

♦ Passing arrays by address

♦ Passing nonarrays by address

Pay close attention because most of the programs in the remain-

der of the book rely on the methods described in this chapter.

Passing by Value (by Copy)
The two wordings “passing by value” and “passing by copy”

mean the same thing in computer terms. Some textbooks and C++

programmers state that arguments are passed by value, and some

state that they are passed by copy. Both of these phrases describe one

Chapter 18 ♦ Passing Values

380

of the two methods by which arguments are passed to receiving

functions. (The other method is called “by address,” or “by refer-

ence.” This method is covered later in the chapter.)

When an argument (local variable) is passed by value, a copy

of the variable’s value is sent to—and is assigned to—the receiving

function’s parameter. If more than one variable is passed by value,

a copy of each of their values is sent to—and is assigned to—the

receiving function’s parameters.

Figure 18.1 shows the passing by copy in action. The value of i—

not the variable—is passed to the called function, which receives it

as a variable i. There are two variables called i, not one. The first is

local to main(), and the second is local to pr_it(). They both have the

same names, but because they are local to their respective functions,

there is no conflict. The variable does not have to be called i in both

functions, and because the value of i is sent to the receiving function,

it does not matter what the receiving function calls the variable that

receives this value.

When you pass by
value, a copy of the
variable’s value is
passed to the
receiving function.

5

Figure 18.1. Passing the variable i by value.

In this case, when passing and receiving variables between

functions, it is wisest to retain the same names. Even though they are

not the same variables, they hold the same value. In this example, the

value 5 is passed from main()’s i to pr_it()’s i.

Because a copy of i’s value (and not the variable itself) is passed

to the receiving function, if pr_it() changed i, it would be changing

only its copy of i and not main()’ s i. This fact truly separates

functions and variables. You now have the technique for passing a

copy of a variable to a receiving function, with the receiving function

being unable to modify the calling function’s variable.

5

381

EXAMPLE
C++ By

All C++’s nonarray variables you have seen so far are passed by

value. You do not have to do anything special to pass variables by

value, except to pass them in the calling function’s argument list and

receive them in the receiving function’s parameter list.

NOTE: The default method for passing parameters is by value,

as just described, unless you pass arrays. Arrays are always

passed by the other method, by address, described later in the

chapter.

Examples

1. The following program asks users for their weight. It then

passes that weight to a function that calculates the equiva-

lent weight on the moon. Notice the second function uses the

passed value, and calculates with it. After weight is passed to

the second function, that function can treat weight as though

it were a local variable.

Identify the program and include the necessary input/output file.

You want to calculate the user’s weight on the moon. Because you
have to hold the user’s weight somewhere, declare the variable
weight as an integer. You also need a function that does the
calculations, so create a function called moon().

Ask the user how much he or she weighs. Put the user’s answer in
weight. Now pass the user’s weight to the moon() function, which
divides the weight by six to determine the equivalent weight on the
moon. Display the user’s weight on the moon.

You have finished, so leave the moon() function, then leave the
main() function.

// Filename: C18PASS1.CPP

// Calculate the user’s weight in a second function.

#include <iostream.h>

moon(int weight); // Prototypes discussed later.

Chapter 18 ♦ Passing Values

382

main()

{

 int weight; // main()’s local weight.

 cout << “How many pounds do you weigh? “;

 cin >> weight;

 moon(weight); // Call the moon() function and

 // pass it the weight.

 return 0; // Return to the operating system.

}

moon(int weight) // Declare the passed parameter.

{

 // Moon weights are 1/6th earth’s weights

 weight /= 6; // Divide the weight by six.

 cout << “You weigh only “ << weight <<

 “ pounds on the moon!”;

 return 0; // Return to main().

}

The output of this program follows:

How many pounds do you weigh? 120

You weigh only 20 pounds on the moon!

2. You can rename passed variables in the receiving function.

They are distinct from the passing function’s variable. The

following is the same program as in Example 1, except the

receiving function calls the passed variable earth_weight. A

new variable, called moon_weight, is local to the called func-

tion and is used for the moon’s equivalent weight.

// Filename: C18PASS2.CPP

// Calculate the user’s weight in a second function.

#include <iostream.h>

moon(int earth_weight);

main()

383

EXAMPLE
C++ By

{

 int weight; // main()’s local weight.

 cout << “How many pounds do you weigh? “;

 cin >> weight;

 moon(weight); // Call the moon() function and

 // pass it the weight.

 return 0; // Return to the operating system.

}

moon(int earth_weight) // Declare the passed parameter.

{

 int moon_weight; // Local to this function.

 // Moon's weights are 1/6th of earth’s weights.

 moon_weight = earth_weight / 6; // Divide weight by six.

 cout << “You only weigh “ << moon_weight <<

 “ pounds on the moon!”;

 return 0; // Return to main().

}

The resulting output is identical to that of the previous

program. Renaming the passed variable changes nothing.

3. The next example passes three variables—of three different

types—to the called function. In the receiving function’s

parameter list, each of these variable types must be declared.

This program prompts users for three values in the main()

function. The main() function then passes these variables to

the receiving function, which calculates and prints values

related to those passed variables. When the called function

modifies a variable passed to the function, notice again that

this does not affect the calling function’s variable. When

variables are passed by value, the value—not the variable—

is passed.

// Filename: C18PASS3.CPP

// Get grade information for a student.

#include <iostream.h>

#include <iomanip.h>

check_grade(char lgrade, float average, int tests);

Chapter 18 ♦ Passing Values

384

main()

{

 char lgrade; // Letter grade.

 int tests; // Number of tests not yet taken.

 float average; // Student’s average based on 4.0 scale.

 cout << “What letter grade do you want? “;

 cin >> lgrade;

 cout << “What is your current test average? “;

 cin >> average;

 cout << “How many tests do you have left? “;

 cin >> tests;

 check_grade(lgrade, average, tests); // Calls function

 // and passes three variables by value.

 return 0;

}

check_grade(char lgrade, float average, int tests)

{

 switch (tests)

 {

 case (0): { cout << “You will get your current grade “

 << “of “ << lgrade;

 break; }

 case (1): { cout << “You still have time to bring “ <<

 “up your average”;

 cout << “of “ << setprecision(1) <<

 average << “up. Study hard!”;

 break; }

 default: { cout << “Relax. You still have plenty of “

 << “time.”;

 break; }

 }

 return 0;

}

385

EXAMPLE
C++ By

Passing by Address
(by Reference)

The two phrases “by address” and “by reference” mean the

same thing. The previous section described passing arguments by

value (or by copy). This section teaches you how to pass arguments

by address.

When you pass an argument (local variable) by address, the

variable’s address is sent to—and is assigned to—the receiving

function’s parameter. (If you pass more than one variable by ad-

dress, each of their addresses is sent to—and is assigned to—the

receiving function’s parameters.)

Variable Addresses

All variables in memory (RAM) are stored at memory ad-

dresses—see Figure 18.2. If you want more information on the

internal representation of memory, refer to Appendix A, “Memory

Addressing, Binary, and Hexadecimal Review.”

Figure 18.2. Memory addresses.

When you tell C++ to define a variable (such as int i;), you are

requesting C++ to find an unused place in memory and assign that

place (or memory address) to i. When your program uses the

variable called i, C++ goes to i’s address and uses whatever is there.

When you pass by
address, the address
of the variable is
passed to the
receiving function.

Chapter 18 ♦ Passing Values

386

If you define five variables as follows,

int i;

float x=9.8;

char ara[2] = {‘A’, ‘B’};

int j=8, k=3;

C++ might arbitrarily place them in memory at the addresses

shown in Figure 18.3.

All C++ arrays are
passed by address.

Figure 18.3. Storing variables in memory.

You don’t know what is contained in the variable called i

because you haven’t put anything in it yet. Before you use i, you

should initialize it with a value. (All variables—except character

variables—usually use more than 1 byte of memory.)

Sample Program

The address of the variable, not its value, is copied to the

receiving function when you pass a variable by address. In C++, all
arrays are automatically passed by address. (Actually, a copy of their

address is passed, but you will understand this better when you

learn more about arrays and pointers.) The following important rule

holds true for programs that pass by address:

387

EXAMPLE
C++ By

Every time you pass a variable by address, if the receiving

function changes the variable, it is changed also in the

calling function.

Therefore, if you pass an array to a function and the function

changes the array, those changes are still with the array when it

returns to the calling function. Unlike passing by value, passing by

address gives you the ability to change a variable in the called
function and to keep those changes in effect in the calling function.

The following sample program helps to illustrate this concept.

// Filename: C18ADD1.CPP

// Passing by address example.

#include <iostream.h>

#include <string.h>

change_it(char c[4]); // Prototype discussed later.

main()

{

 char name[4]=”ABC”;

 change_it(name); // Passes by address because

 // it is an array.

 cout << name << “\n”; // Called function can

 // change array.

 return 0;

}

change_it(char c[4]) // You must tell the function

 // that c is an array.

{

 cout << c << “\n”; // Print as it is passed.

 strcpy(c, “USA”); // Change the array, both

 // here and in main().

 return 0;

}

Here is the output from this program:

ABC

USA

Chapter 18 ♦ Passing Values

388

At this point, you should have no trouble understanding that

the array is passed from main() to the function called change_it().

Even though change_it() calls the array c, it refers to the same array

passed by the main() function (name).

Figure 18.4 shows how the array is passed. Although the

address of the array—and not its value—is passed from name to c,

both arrays are the same.

ara

Figure 18.4. Passing an array by address.

Before going any further, a few additional comments are in

order. Because the address of name is passed to the function—even

though the array is called c in the receiving function—it is still the

same array as name. Figure 18.5 shows how C++ accomplishes this

task at the memory-address level.

Figure 18.5. The array being passed is the same array in both functions.

The variable array is referred to as name in main() and as c in

change_it(). Because the address of name is copied to the receiving

function, the variable is changed no matter what it is called in either

389

EXAMPLE
C++ By

function. Because change_it() changes the array, the array is changed

also in main().

Examples

1. You can now use a function to fill an array with user input.

The following function asks users for their first name in the

function called get_name(). As users type the name in the

array, it is also entered in main()’s array. The main() function

then passes the array to pr_name(), where it is printed. (If

arrays were passed by value, this program would not work.

Only the array value would be passed to the called func-

tions.)

// Filename: C18ADD2.CPP

// Get a name in an array, then print it using

// separate functions.

#include <iostream.h>

get_name(char name[25]); // Prototypes discussed later.

print_name(char name[25]);

main()

{

 char name[25];

 get_name(name); // Get the user’s name.

 print_name(name); // Print the user’s name.

 return 0;

}

get_name(char name[25]) // Pass the array by address.

{

 cout << “What is your first name? “;

 cin >> name;

 return 0;

}

print_name(char name[25])

{

 cout << “\n\n Here you are, “ << name;

 return 0;

}

Chapter 18 ♦ Passing Values

390

When you pass an array, be sure to specify the array’s type

in the receiving function’s parameter list. If the previous

program declared the passed array with

get_name(char name)

the function get_name() would interpret this as a single

character variable, not a character array. You never have to

put the array size in brackets. The following statement also

works as the first line of get_name().

get_name(char name[])

Most C++ programmers put the array size in the brackets to

clarify the array size, even though the size is not needed.

2. Many programmers pass character arrays to functions to

erase them. Here is a function called clear_it(). It expects

two parameters: a character array and the total number of

elements declared for that array. The array is passed by

address (as are all arrays) and the number of elements,

num_els, is passed by value (as are all nonarrays). When the

function finishes, the array is cleared (all its elements are

reset to null zero). Subsequent functions that use it can then

have an empty array.

clear_it(char ara[10], int num_els)

{

 int ctr;

 for (ctr=0; ctr<num_els; ctr++)

 { ara[ctr] = ‘\0’; }

 return 0;

}

The brackets after ara do not have to contain a number, as

described in the previous example. The 10 in this example is

simply a placeholder for the brackets. Any value (or no

value) would work as well.

391

EXAMPLE
C++ By

Passing Nonarrays by Address

You now should see the difference between passing variables

by address and by value. Arrays can be passed by address, and

nonarrays can be passed by value. You can override the by value
default for nonarrays. This is helpful sometimes, but it is not always

recommended because the called function can damage values in the

called function.

If you want a nonarray variable changed in a receiving function

and also want the changes kept in the calling function, you must

override the default and pass the variable by address. (You should

understand this section better after you learn how arrays and

pointers relate.) To pass a nonarray by address, you must precede

the argument in the receiving function with an ampersand (&).

This might sound strange to you (and it is, at this point). Few

C++ programmers override the default of passing by address. When

you learn about pointers later, you should have little need to do so.

Most C++ programmers don’t like to clutter their code with these

extra ampersands, but it’s nice to know you can override the default

if necessary.

The following examples demonstrate how to pass nonarray

variables by address.

Examples

1. The following program passes a variable by address from

main() to a function. The function changes it and returns to

main(). Because the variable is passed by address, main()

recognizes the new value.

// Filename: C18ADD3.CPP

// Demonstrate passing nonarrays by address.

#include <iostream.h>

do_fun(int &amt); // Prototypes discussed later.

main()

{

 int amt;

You can pass
nonarrays by
address as well.

Chapter 18 ♦ Passing Values

392

 amt = 100; // Assign a value in main().

 cout << “In main(), amt is “ << amt << “\n”;

 do_fun(amt); // Pass amt by address

 cout << “After return, amt is “ << amt << “ in main()\n”;

 return 0;

}

do_fun(int &amt) // Inform function of

 // passing by address.

{

 amt = 85; // Assign new value to amt.

 cout << “In do_fun(), amt is “ << amt << “\n”;

 return 0;

}

The output from this program follows:

In main(), amt is 100

In do_fun(), amt is 85

After return, amt is 85 in main()

Notice that amt changed in the called function. Because it was

passed by address, it is changed also in the calling function.

2. You can use a function to get the user’s keyboard values.

The main() function recognizes those values as long as you

pass them by address. The following program calculates the

cubic feet in a swimming pool. In one function, it requests

the width, length, and depth. In another function, it calcu-

lates the cubic feet of water. Finally, in a third function, it

prints the answer. The main() function is clearly a controlling

function, passing variables between these functions by

address.

// Filename: C18POOL.CPP

// Calculates the cubic feet in a swimming pool.

#include <iostream.h>

get_values(int &length, int &width, int &depth);

calc_cubic(int &length, int &width, int &depth, int &cubic);

print_cubic(int &cubic);

393

EXAMPLE
C++ By

main()

{

 int length, width, depth, cubic;

 get_values(length, width, depth);

 calc_cubic(length, width, depth, cubic);

 print_cubic(cubic);

 return 0;

}

get_values(int &length, int &width, int &depth)

{

 cout << “What is the pool’s length? “;

 cin >> length;

 cout << “What is the pool’s width? “;

 cin >> width;

 cout << “What is the pool’s average depth? “;

 cin >> depth;

 return 0;

}

calc_cubic(int &length, int &width, int &depth, int &cubic)

{

 cubic = (length) * (width) * (depth);

 return 0;

}

print_cubic(int &cubic)

{

 cout << “\nThe pool has “ << cubic << “ cubic feet\n”;

 return 0;

}

The output follows:

What is the pool’s length? 16

What is the pool’s width? 32

What is the pool’s average depth? 6

The pool has 3072 cubic feet

Chapter 18 ♦ Passing Values

394

All variables in a function must be preceded with an amper-

sand if they are to be passed by address.

Review Questions
The answers to the review questions are in Appendix B.

1. What type of variable is automatically passed by address?

2. What type of variable is automatically passed by value?

3. True or false: If a variable is passed by value, it is passed also

by copy.

4. If a variable is passed to a function by value and the function

changes the variable, is it changed in the calling function?

5. If a variable is passed to a function by address and the

function changes the variable, is it changed in the calling

function?

6. What is wrong with the following function?

do_fun(x, y, z)

{

 cout << “The variables are “ << x << y << z;

 return 0;

}

7. Suppose you pass a nonarray variable and an array to a

function at the same time. What is the default?

a. Both are passed by address.

b. Both are passed by value.

c. One is passed by address and the other is passed by

value.

395

EXAMPLE
C++ By

Review Exercises
1. Write a main() function and a second function that main()

calls. Ask users for their annual income in main(). Pass the

income to the second function and print a congratulatory

message if the user makes more than $50,000 or an encour-

agement message if the user makes less.

2. Write a three-function program, consisting of the following

functions:

main()

fun1()

fun2()

Declare a 10-element character array in main(), fill it with the

letters A through J in fun1(), then print that array backwards

in fun2().

3. Write a program whose main() function passes a number to a

function called print_aster(). The print_aster() function

prints that many asterisks on a line, across the screen. If

print_aster() is passed a number greater than 80, display an

error because most screens cannot print more than 80 char-

acters on the same line. When execution is finished, return

control to main() and then return to the operating system.

4. Write a function that is passed two integer values by ad-

dress. The function should declare a third local variable. Use

the third variable as an intermediate variable and swap the

values of both passed integers. For example, suppose the

calling function passes your function old_pay and new_pay

as in

swap_it(old_pay, new_pay);

The swap_it() function reverses the two values so, when

control returns to the calling function, the values of old_pay

and new_pay are swapped.

Chapter 18 ♦ Passing Values

396

Summary
You now have a complete understanding of the various meth-

ods for passing data to functions. Because you will be using local

variables as much as possible, you have to know how to pass local

variables between functions but also keep the variables away from

functions that don’t need them.

You can pass data in two ways: by value and by address. When

you pass data by value, which is the default method for nonarrays,

only a copy of the variable’s contents are passed. If the called

function modifies its parameters, those variables are not modified in

the calling function. When you pass data by address, as is done with

arrays and nonarray variables preceded by an ampersand, the

receiving function can change the data in both functions.

Whenever you pass values, you must ensure that they match in

number and type. If you don’t match them, you could have prob-

lems. For example, suppose you pass an array and a floating-point

variable, but in the receiving function, you receive a floating-point

variable followed by an array. The data does not reach the receiving

function properly because the parameter data types do not match

the variables being passed. Chapter 19, “Function Return Values

and Prototypes,” shows you how to protect against such disasters

by prototyping all your functions.

