
397

EXAMPLE
C++ By

19

Function Return
Values and
Prototypes

So far, you have passed variables to functions in only one direc-

tion—a calling function passed data to a receiving function. You

have yet to see how data are passed back from the receiving function

to the calling function. When you pass variables by address, the data

are changed in both functions—but this is different from passing

data back. This chapter focuses on writing function return values

that improve your programming power.

After you learn to pass and return values, you have to prototype
your own functions as well as C++’s built-in functions, such as cout

and cin. By prototyping your functions, you ensure the accuracy of

passed and returned values.

This chapter introduces you to the following:

♦ Returning values from functions

♦ Prototyping functions

♦ Understanding header files

By returning values from functions, you make your functions

fully modular. They can now stand apart from the other functions.

Chapter 19 ♦ Function Return Values and Prototypes

398

They can receive and return values and act as building blocks that

compose your complete application.

Function Return Values
Until now, all functions in this book have been subroutines or

subfunctions. A C++ subroutine is a function that is called from

another function, but it does not return any values. The difference

between subroutines and functions is not as critical in C++ as it is

in other languages. All functions, whether they are subroutines or

functions that return values, are defined in the same way. You can

pass variables to each of them, as you have seen throughout this

section of the book.

Functions that return values offer you a new approach to

programming. In addition to passing data one-way, from calling to

receiving function, you can pass data back from a receiving function

to its calling function. When you want to return a value from a

function to its calling function, put the return value after the return

statement. To clarify the return value even more, many program-

mers put parentheses around the return value, as shown in the

following syntax:

return (return value);

CAUTION: Do not return global variables. There is no need

to do so because their values are already known throughout

the code.

The calling function must have a use for the return value. For

example, suppose you wrote a function that calculated the average

of any three integer variables passed to it. If you return the average,

the calling function has to receive that return value. The following

sample program helps to illustrate this principle.

// Filename: C19AVG.CPP

// Calculates the average of three input values.

#include <iostream.h>

int calc_av(int num1, int num2, int num3); //Prototype

Put the return value
at the end of the
return statement.

399

EXAMPLE
C++ By

main()

{

 int num1, num2, num3;

 int avg; // Holds the return value.

 cout << “Please type three numbers (such as 23 54 85) “;

 cin >> num1 >> num2 >> num3;

 // Call the function, pass the numbers,

 // and accept the return value amount.

 avg = calc_av(num1, num2, num3);

 cout << “\n\nThe average is “ << avg; // Print the

 // return value.

 return 0;

}

int calc_av(int num1, int num2, int num3)

{

 int local_avg; // Holds the average for these numbers.

 local_avg = (num1+num2+num3) / 3;

 return (local_avg);

}

Here is a sample output from the program:

Please type three numbers (such as 23 54 85) 30 40 50

The average is 40

Study this program carefully. It is similar to many you have

seen, but a few additional points have to be considered now that the

function returns a value. It might help to walk through this program

a few lines at a time.

The first part of main() is similar to other programs you have

seen. It declares its local variables: three for user input and one for

the calculated average. The cout and cin are familiar to you. The

function call to calc_av() is also familiar; it passes three variables

Chapter 19 ♦ Function Return Values and Prototypes

400

(num1, num2, and num3) by value to calc_av(). (If it passed them by

address, an ampersand (&) would have to precede each argument, as

discussed in Chapter 18.)

The receiving function, calc_av(), seems similar to others you

have seen. The only difference is that the first line, the function’s

definition line, has one addition—the int before its name. This is the

type of the return value. You must always precede a function name

with its return data type. If you do not specify a type, C++ assumes

a type of int. Therefore, if this example had no return type, it would

work just as well because an int return type would be assumed.

Because the variable being returned from calc_av() is an inte-

ger, the int return type is placed before calc_av()’s name.

You can see also that the return statement of calc_av() includes

the return value, local_avg. This is the variable being sent back to the

calling function, main(). You can return only a single variable to a

calling function.

Even though a function can receive more than one parameter,

it can return only a single value to the calling function. If a receiving

function is modifying more than one value from the calling function,

you must pass the parameters by address; you cannot return mul-

tiple values using a return statement.

After the receiving function, calc_av(), returns the value, main()

must do something with that returned value. So far, you have seen

function calls on lines by themselves. Notice in main() that the

function call appears on the right side of the following assignment

statement:

avg = calc_av(num1, num2, num3);

When the calc_av() function returns its value—the average of

the three numbers—that value replaces the function call. If the

average computed in calc_av() is 40, the C++ compiler interprets the

following statement in place of the function call:

avg = 40;

You typed a function call to the right of the equal sign, but the

program replaces a function call with its return value when the

return takes place. In other words, a function that returns a value

Put the function’s
return type before its
name. If you don’t
specify a return type,
int is the default.

401

EXAMPLE
C++ By

becomes that value. You must put such a function anywhere you put

any variable or literal (usually to the right of an equal sign, in an

expression, or in cout). The following is an incorrect way of calling

calc_av():

calc_av(num1, num2, num3);

If you did this, C++ would have nowhere to put the return

value.

CAUTION: Function calls that return values usually don’t

appear on lines by themselves. Because the function call is

replaced by the return value, you should do something with

that return value (such as assign it to a variable or use it in an

expression). Return values can be ignored, but doing so usually

defeats the purpose of creating them.

Examples

1. The following program passes a number to a function called

doub(). The function doubles the number and returns the

result.

// Filename: C19DOUB.CPP

// Doubles the user’s number.

#include <iostream.h>

int doub (int num);

main()

{

 int number; // Holds user’s input.

 int d_number; // Holds double the user’s input.

 cout << “What number do you want doubled? “;

 cin >> number;

 d_number = doub(number); // Assigns return value.

 cout << number << “ doubled is “ << d_number;

 return 0;

}

Chapter 19 ♦ Function Return Values and Prototypes

402

int doub(int num)

{

 int d_num;

 d_num = num * 2; // Doubles the number.

 return (d_num); // Returns the result.

}

The program produces output such as this:

What number do you want doubled? 5

5 doubled is 10

2. Function return values can be used anywhere literals, vari-

ables, and expressions are used. The following program is

similar to the previous one. The difference is in main().

The function call is performed not on a line by itself, but

from a cout. This is a nested function call. You call the built-

in function cout using the return value from one of the

program’s functions named doub(). Because the call to doub()

is replaced by its return value, the cout has enough informa-

tion to proceed as soon as doub() returns. This gives main()

less overhead because it no longer needs a variable called

d_number, although you must use your own judgment as to

whether this program is easier to maintain. Sometimes it is

wise to include function calls in other expressions; other

times it is clearer to call the function and assign its return

value to a variable before using it.

// Filename: C19DOUB2.CPP

// Doubles the user’s number.

#include <iostream.h>

int doub(int num); // Prototype

main()

{

 int number; // Holds user’s input.

 cout << “What number do you want doubled? “;

 cin >> number;

403

EXAMPLE
C++ By

 // The third cout parameter is

 // replaced with a return value.

 cout << number << “ doubled is “ << doub(number);

 return 0;

}

int doub(int num)

{

 int d_num;

 d_num = num * 2; // Double the number.

 return (d_num); // Return the result.

}

3. The following program asks the user for a number. That

number is then passed to a function called sum(), which adds

the numbers from 1 to that number. In other words, if the

user types a 6, the function returns the result of the following

calculation:

1 + 2 + 3 + 4 + 5 + 6

This is known as the sum of the digits calculation, and it is

sometimes used for depreciation in accounting.

// Filename: C19SUMD.CPP

// Compute the sum of the digits.

#include <iostream.h>

int sum(int num); // Prototype

main()

{

 int num, sumd;

 cout << “Please type a number: “;

 cin >> num;

 sumd = sum(num);

 cout << “The sum of the digits is “ << sumd;

 return 0;

}

Chapter 19 ♦ Function Return Values and Prototypes

404

int sum(int num)

{

 int ctr; // Local loop counter.

 int sumd=0; // Local to this function.

 if (num <= 0) // Check whether parameter is too small.

 { sumd = num; } // Returns parameter if too small.

 else

 { for (ctr=1; ctr<=num; ctr++)

 { sumd += ctr; }

 }

 return(sumd);

}

The following is a sample output from this program:

Please type a number: 6

The sum of the digits is 21

4. The following program contains two functions that return

values. The first function, maximum(), returns the larger of two

numbers entered by the user. The second one, minimum(),

returns the smaller.

// Filename: C19MINMX.CPP

// Finds minimum and maximum values in functions.

#include <iostream.h>

int maximum(int num1, int num2); // Prototypes

int minimum(int num1, int num2);

main()

{

 int num1, num2; // User’s two numbers.

 int min, max;

 cout << “Please type two numbers (such as 46 75) “;

 cin >> num1 >> num2;

 max = maximum(num1, num2); // Assign the return

 min = minimum(num1, num2); // value of each

 // function to variables.

405

EXAMPLE
C++ By

 cout << “The minimum number is “ << min << “\n”;

 cout << “The maximum number is “ << max << “\n”;

 return 0;

}

int maximum(int num1, int num2)

{

 int max; // Local to this function only.

 max = (num1 > num2) ? (num1) : (num2);

 return (max);

}

int minimum(int num1, int num2)

{

 int min; // Local to this function only.

 min = (num1 < num2) ? (num1) : (num2);

 return (min);

}

Here is a sample output from this program:

Please type two numbers (such as 46 75) 72 55

The minimum number is 55

The maximum number is 72

If the user types the same number, minimum and maximum are

the same.

These two functions can be passed any two integer values. In

such a simple example as this one, the user certainly already

knows which number is lower or higher. The point of such

an example is to show how to code return values. You might

want to use similar functions in a more useful application,

such as finding the highest paid employee from a payroll

disk file.

Function Prototypes
The word prototype is sometimes defined as a model. In C++, a

function prototype models the actual function. Before completing

Chapter 19 ♦ Function Return Values and Prototypes

406

your study of functions, parameters, and return values, you must

understand how to prototype each function in your program.

C++ requires that you prototype all functions in your program.

When prototyping, you inform C++ of the function’s parameter

types and its return value, if any.

To prototype a function, copy the function’s definition line to

the top of your program (immediately before or after the #include

<iostream.h> line). Place a semicolon at the end of the function

definition line, and you have the prototype. The definition line (the

function’s first line) contains the return type, the function name, and

the type of each argument, so the function prototype serves as a

model of the function that follows.

If a function does not return a value, or if that function has no

arguments passed to it, you should still prototype it. Place the

keyword void in place of the return type or the parameters. main() is

the only function that you do not have to prototype because it is self-
prototyping; meaning main() is not called by another function. The

first time main() appears in your program (assuming you follow the

standard approach and make main() your program’s first function),

it is executed.

If a function returns nothing, void must be its return type. Put

void in the argument parentheses of function prototypes with no

arguments. All functions must match their prototypes.

All main() functions in this book have returned a 0. Why? You

now know enough to answer that question. Because main() is self-

prototyping, and because the void keyword never appeared before

main() in these programs, C++ assumed an int return type. All C++

functions prototyped as returning int or those without any return

data type prototype assume int. If you wanted to not put return 0;

at the end of main()’s functions, you must insert void before main()

as in:

void main() // main() self-prototypes to return nothing.

You can look at a statement and tell whether it is a prototype or

a function definition (the function’s first line) by the semicolon on

the end. All prototypes, unless you make main() self-prototype, end

with a semicolon.

C++ assumes
functions return int
unless you put a
different data return
type, or use the
void keyword.

407

EXAMPLE
C++ By

Prototype for Safety

Prototyping protects you from programming mistakes. Sup-

pose you write a function that expects two arguments: an integer

followed by a floating-point value. Here is the first line of such a

function:

my_fun(int num, float amount)

What if you passed incorrect data types to my_fun()? If you were

to call this function by passing it two literals, a floating-point

followed by an integer, as in

my_fun(23.43, 5); // Call the my_fun() function.

the function would not receive correct parameters. It is expecting an

integer followed by a floating-point, but you did the opposite and

sent it a floating-point followed by an integer.

In regular C programs, mismatched arguments such as these

generate no error message even though the data are not passed

correctly. C++ requires prototypes so you cannot send the wrong

data types to a function (or expect the wrong data type to be

returned). Prototyping the previous function results in this:

void my_fun(int num, float amount); // Prototype

In doing so, you tell the compiler to check this function for

accuracy. You inform the compiler to expect nothing after the return

statement, not even 0, (due to the void keyword) and to expect an

integer followed by a floating-point in the parentheses.

If you break any of the prototype’s rules, the compiler informs

you of the problem and you can correct it.

Prototype All Functions

You should prototype every function in your program. As just

described, the prototype defines (for the rest of the program) which

functions follow, their return types, and their parameter types. You

should prototype C++’s built-in functions also, such as printf() and

scanf() if you use them.

Prototyping protects
your programs from
function program-
ming errors.

Chapter 19 ♦ Function Return Values and Prototypes

408

Think about how you prototype printf(). You don’t always

pass it the same types of parameters because you print different data

with each printf(). Prototyping functions you write is easy: The

prototype is basically the first line in the function. Prototyping

functions you do not write might seem difficult, but it isn’t—you

have already done it with every program in this book!

The designers of C++ realized that all functions have to be

prototyped. They realized also that you cannot prototype built-in

functions, so they did it for you and placed the prototypes in header

files on your disk. You have been including the printf() and scanf()

prototypes in each program that used them in this book with the

following statement:

#include <stdio.h>

Inside the stdio.h file is a prototype of many of C++’s input and

output functions. By having prototypes of these functions, you

ensure that they cannot be passed bad values. If someone attempts

to pass incorrect values, C++ catches the problem.

Because printf() and scanf() are not used very often in C++, the

cout and cin operators have their own header file called iostream.h

that you have seen included in this book’s programs as well. The

iostream.h file does not actually include prototypes for cout and cin

because they are operators and not functions, but iostream.h does

include some needed definitions to make cout and cin work.

Remember too that iomanip.h has to be included if you use a

setw or setprecision modifier in cout. Any time you use a new built-

in C++ function or a manipulating operator, check your compiler’s

manual to find the name of the prototype file to include.

Prototyping is the primary reason why you should always

include the matching header file when you use C++’s built-in

functions. The strcpy() function you saw in previous chapters

requires the following line:

#include <string.h>

This is the header file for the strcpy() function. Without it, the

program does not work.

Header files contain
built-in function
prototypes.

409

EXAMPLE
C++ By

Examples

1. Prototype all functions in all programs except main(). Even

main() must be prototyped if it returns nothing (not even 0).

The following program includes two prototypes: one for

main() because it returns nothing, and one for the built-in

printf() and scanf() functions.

// Filename: C19PRO1.CPP

// Calculates sales tax on a sale

#include <stdio.h> // Prototype built-in functions.

void main(void);

void main(void)

{

 float total_sale;

 float tax_rate = .07; // Assume seven percent

 // tax rate.

 printf(“What is the sale amount? “);

 scanf(“ %f”, &total_sale);

 total_sale += (tax_rate * total_sale);

 printf(“The total sale is %.2f”, total_sale);

 return; // No 0 required!

}

Notice that main()’s return statement needed only a semi-

colon after it. As long as you prototype main() with a void

return type, the last line in main() can be return; instead of

having to type return 0; each time.

2. The following program asks the user for a number in main(),

and passes that number to ascii(). The ascii() function

returns the ASCII character that matches the user’s number.

This example illustrates a character return type. Functions

can return any data type.

Chapter 19 ♦ Function Return Values and Prototypes

410

// Filename: C19ASC.CPP

// Prints the ASCII character of the user’s number.

// Prototypes follow.

#include <iostream.h>

char ascii(int num);

void main()

{

 int num;

 char asc_char;

 cout << “Enter an ASCII number? “;

 cin >> num;

 asc_char = ascii(num);

 cout << “The ASCII character for “ << num

 << “ is “ << asc_char;

 return;

}

char ascii(int num)

{

 char asc_char;

 asc_char = char(num); // Type cast to a character.

 return (asc_char);

}

The output from this program follows:

Enter an ASCII number? 67

The ASCII character for 67 is C

3. Suppose you have to calculate net pay for a company. You

find yourself multiplying the hours worked by the hourly

pay, then deducting taxes to compute the net pay. The

following program includes a function that does this for you.

It requires three arguments: the hours worked, the hourly

pay, and the tax rate (as a floating-point decimal, such as .30

for 30 percent). The function returns the net pay. The main()

calling program tests the function by sending three different

payroll values to the function and printing the three return

values.

411

EXAMPLE
C++ By

// Filename: C19NPAY.CPP

// Defines a function that computes net pay.

#include <iostream.h> // Needed for cout and cin.

void main(void);

float netpayfun(float hours, float rate, float taxrate);

void main(void)

{

 float net_pay;

 net_pay = netpayfun(40.0, 3.50, .20);

 cout << “The pay for 40 hours at $3.50/hr., and a 20% “

 << “tax rate is $”;

 cout << net_pay << “\n”;

 net_pay = netpayfun(50.0, 10.00, .30);

 cout << “The pay for 50 hours at $10.00/hr., and a 30% “

 << “tax rate is $”;

 cout << net_pay << “\n”;

 net_pay = netpayfun(10.0, 5.00, .10);

 cout << “The pay for 10 hours at $5.00/hr., and a 10% “

 << “ tax rate is $”;

 cout << net_pay << “\n”;

 return;

}

float netpayfun(float hours, float rate, float taxrate)

{

 float gross_pay, taxes, net_pay;

 gross_pay = (hours * rate);

 taxes = (taxrate * gross_pay);

 net_pay = (gross_pay - taxes);

 return (net_pay);

}

Chapter 19 ♦ Function Return Values and Prototypes

412

Review Questions
The answers to the review questions are in Appendix B.

1. How do you declare function return types?

2. What is the maximum number of return values a function

can return?

3. What are header files for?

4. What is the default function return type?

5. True or false: a function that returns a value can be passed

only a single parameter.

6. How do prototypes protect the programmer from bugs?

7. Why don’t you have to return global variables?

8. What is the return type, given the following function

prototype?

float my_fun(char a, int b, float c);

How many parameters are passed to my_fun()? What are

their types?

Review Exercises
1. Write a program that contains two functions. The first

function returns the square of the integer passed to it, and

the second function returns the cube. Prototype main() so

you do not have to return a value.

2. Write a function that returns the double-precision area of a

circle, given that a double-precision radius is passed to it.

The formula for calculating the area of a circle is

area = 3.14159 * (radius * radius)

3. Write a function that returns the value of a polynomial given

this formula:

9x4 + 15x2 + x1

413

EXAMPLE
C++ By

Assume x is passed from main() and it is supplied by the

user.

Summary
You learned how to build your own collection of functions.

When you write a function, you might want to use it in more than

one program—there is no need to reinvent the wheel. Many pro-

grammers write useful functions and use them in more than one

program.

You now understand the importance of prototyping functions.

You should prototype all your own functions, and include the

appropriate header file when you use one of C++’s built-in func-

tions. Furthermore, when a function returns a value other than an

integer, you must prototype so C++ recognizes the noninteger

return value.

Chapter 19 ♦ Function Return Values and Prototypes

414

