
415

EXAMPLE
C++ By

20

Default Arguments
and Function
Overloading

All functions that receive arguments do not have to be sent values.

C++ enables you to specify default argument lists. You can write

functions that assume argument values even if you do not pass them

any arguments.

C++ also enables you to write more than one function with the

same function name. This is called overloading functions. As long as

their argument lists differ, the functions are differentiated by C++.

This chapter introduces you to the following:

♦ Default argument lists

♦ Overloaded functions

♦ Name-mangling

Default argument lists and overloaded functions are not avail-

able in regular C. C++ extends the power of your programs by

providing these time-saving procedures.

Chapter 20 ♦ Default Arguments and Function Overloading

416

Default Argument Lists
Suppose you were writing a program that has to print a

message on-screen for a short period of time. For instance, you pass

a function an error message stored in a character array and the

function prints the error message for a certain period of time.

The prototype for such a function can be this:

void pr_msg(char note[]);

Therefore, to request that pr_msg() print the line “Turn printer

on”, you call it this way:

pr_msg(“Turn printer on”); // Passes a message to be printed.

This command prints the message “Turn printer on” for a period

of five seconds or so. To request that pr_msg() print the line “Press

any key to continue...”, you call it this way:

pr_msg(“Press a key to continue...”); // Passes a message.

As you write more of the program, you begin to realize that you

are printing one message, for instance the “Turn printer on” message,

more often than any other message. It seems as if the pr_msg()

function is receiving that message much more often than any

other. This might be the case if you were writing a program that

printed many reports to the printer. You still will use pr_msg() for

other delayed messages, but the “Turn printer on” message is most

frequently used.

Instead of calling the function over and over, typing the same

message each time, you can set up the prototype for pr_msg() so it

defaults to the “Turn printer on” in this way:

void pr_msg(char note[]=”Turn printer on”);// Prototype

After prototyping pr_msg() with the default argument list, C++

assumes you want to pass “Turn printer on” to the function unless

you override the default by passing something else to it. For in-

stance, in main(), you call pr_msg() this way:

pr_msg(); // C++ assumes you mean “Turn printer on”.

This makes your programming job easier. Because most of the

time you want pr_msg() to print “Turn printer on” the default

List default argument
values in the
prototype.

417

EXAMPLE
C++ By

argument list takes care of the message and you do not have to pass

the message when you call the function. However, those few times

when you want to pass something else, simply pass a different

message. For example, to make pr_msg() print “Incorrect value” you

type:

pr_msg(“Incorrect value”); // Pass a new message.

TIP: Any time you call a function several times and find

yourself passing that function the same parameters most of the

time, consider using a default argument list.

Multiple Default Arguments
You can specify more than one default argument in the proto-

type list. Here is a prototype for a function with three default

arguments:

float funct1(int i=10, float x=7.5, char c=’A’);

There are several ways you can call this function. Here are some

samples:

funct1();

All default values are assumed.

funct1(25);

A 25 is sent to the integer argument, and the default values are

assumed for the rest.

funct1(25, 31.25);

A 25 is sent to the integer argument, 31.25 to the floating-point

argument, and the default value of ‘A’ is assumed for the character

argument.

Chapter 20 ♦ Default Arguments and Function Overloading

418

NOTE: If only some of a function’s arguments are default

arguments, those default arguments must appear on the far left
of the argument list. No default arguments can appear to the

left of those not specified as default. This is an invalid default

argument prototype:

float func2(int i=10, float x, char c, long n=10.232);

This is invalid because a default argument appears on the left

of a nondefault argument. To fix this, you have to move the two

default arguments to the far left (the start) of the argument list.

Therefore, by rearranging the prototype (and the resulting

function calls) as follows, C++ enables you to accomplish the

same objective as you attempted with the previous line:

float func2(float x, char c, int i=10, long n=10.232);

Examples

1. Here is a complete program that illustrates the message-

printing function described earlier in this chapter. The main()

function simply calls the delayed message-printing function

three times, each time passing it a different set of argument

lists.

// Filename: C20DEF1.CPP

// Illustrates default argument list.

#include <iostream.h>

void pr_msg(char note[]=”Turn printer on”); // Prototype.

void main()

{

 pr_msg(); // Prints default message.

 pr_msg(“A new message”); // Prints another message.

 pr_msg(); // Prints default message again.

 return;

}

void pr_msg(char note[]) // Only prototype contains defaults.

419

EXAMPLE
C++ By

{

 long int delay;

 cout << note << “\n”;

 for (delay=0; delay<500000; delay++)

 { ; /* Do nothing while waiting */ }

 return;

}

The program produces the following output:

Turn printer on

A new message

Turn printer on

The delay loop causes each line to display for a couple of

seconds or more, depending on the speed of your computer,

until all three lines print.

2. The following program illustrates the use of defaulting

several arguments. main() calls the function de_fun() five

times, sending de_fun() five sets of arguments. The de_fun()

function prints five different things depending on main()’s

argument list.

// Filename: C20DEF2.CPP

// Demonstrates default argument list with several parameters.

#include <iostream.h>

#include <iomanip.h>

void de_fun(int i=5, long j=40034, float x=10.25,

 char ch=’Z’, double d=4.3234); // Prototype

void main()

{

 de_fun(); // All defaults used.

 de_fun(2); // First default overridden.

 de_fun(2, 75037); // First and second default overridden.

 de_fun(2, 75037, 35.88); // First, second, and third

 de_fun(2, 75037, 35.88, ‘G’); // First, second, third,

 // and fourth

 de_fun(2, 75037, 35.88, ‘G’, .0023); // No defaulting.

Chapter 20 ♦ Default Arguments and Function Overloading

420

 return;

}

void de_fun(int i, long j, float x, char ch, double d)

{

 cout << setprecision(4) << “i: “ << i << “ “ << “j: “ << j;

 cout << “ x: “ << x << “ “ << “ch: “ << ch;

 cout << “ d: “ << d << “\n”;

 return;

}

Here is the output from this program:

i: 5 j: 40034 x: 10.25 ch: Z d: 4.3234

i: 2 j: 40034 x: 10.25 ch: Z d: 4.3234

i: 2 j: 75037 x: 10.25 ch: Z d: 4.3234

i: 2 j: 75037 x: 35.88 ch: Z d: 4.3234

i: 2 j: 75037 x: 35.88 ch: G d: 4.3234

i: 2 j: 75037 x: 35.88 ch: G d: 0.0023

Notice that each call to de_fun() produces a different output

because main() sends a different set of parameters each time

main() calls de_fun().

Overloaded Functions
Unlike regular C, C++ enables you to have more than one

function with the same name. In other words, you can have three

functions called abs() in the same program. Functions with the same

names are called overloaded functions. C++ requires that each

overloaded function differ in its argument list. Overloaded func-

tions enable you to have similar functions that work on different

types of data.

For example, suppose you wrote a function that returned the

absolute value of whatever number you passed to it. The absolute

value of a number is its positive equivalent. For instance, the

absolute value of 10.25 is 10.25 and the absolute value of –10.25

is 10.25.

Absolute values are used in distance, temperature, and weight

calculations. The difference in the weights of two children is always

421

EXAMPLE
C++ By

positive. If Joe weighs 65 pounds and Mary weighs 55 pounds, their

difference is a positive 10 pounds. You can subtract the 65 from 55

(–10) or 55 from 65 (+10) and the weight difference is always the

absolute value of the result.

Suppose you had to write an absolute-value function for inte-

gers, and an absolute-value function for floating-point numbers.

Without function overloading, you need these two functions:

int iabs(int i) // Returns absolute value of an integer.

{

 if (i < 0)

 { return (i * -1); } // Makes positive.

 else

 { return (i); } // Already positive.

}

float fabs(float x) // Returns absolute value of a float.

{

 if (x < 0.0)

 { return (x * -1.0); } // Makes positive.

 else

 { return (x); } // Already positive.

}

Without overloading, if you had a floating-point variable for

which you needed the absolute value, you pass it to the fabs()

function as in:

ans = fabs(weight);

If you needed the absolute value of an integer variable, you

pass it to the iabs() function as in:

ians = iabs(age);

Because the code for these two functions differ only in their

parameter lists, they are perfect candidates for overloaded func-

tions. Call both functions abs(), prototype both of them, and code

each of them separately in your program. After overloading the two

functions (each of which works on two different types of parameters

with the same name), you pass your floating-point or integer value

to abs(). The C++ compiler determines which function you wanted

to call.

Chapter 20 ♦ Default Arguments and Function Overloading

422

CAUTION: If two or more functions differ only in their return

types, C++ cannot overload them. Two or more functions that

differ only in their return types must have different names and

cannot be overloaded.

This process simplifies your programming considerably. In-

stead of having to remember several different function names, you

only have to remember one function name. C++ passes the argu-

ments to the proper function.

NOTE: C++ uses name-mangling to accomplish overloaded

functions. Understanding name-mangling helps you as you

become an advanced C++ programmer.

When C++ realizes that you are overloading two or more

functions with the same name, each function differing only in

its parameter list, C++ changes the name of the function and

adds letters to the end of the function name that match the

parameters. Different C++ compilers do this differently.

To understand what the compiler does, take the absolute value

function described earlier. C++ might change the integer abso-

lute value function to absi() and the floating-point absolute

value function to absf(). When you call the function with this

function call:

ians = abs(age);

C++ determines that you want the absi() function called. As far

as you know, C++ is not mangling the names; you never see the

name differences in your program’s source code. However, the

compiler performs the name-mangling so it can keep track of

different functions that have the same name.

423

EXAMPLE
C++ By

Examples

1. Here is the complete absolute value program described in

the previous text. Notice that both functions are prototyped.

(The two prototypes signal C++ that it must perform name-

mangling to determine the correct function names to call.)

// Filename: C20OVF1.CPP

// Overloads two absolute value functions.

#include <iostream.h> // Prototype cout and cin.

#include <iomanip.h> // Prototype setprecision(2).

int abs(int i); // abs() is overloaded twice

float abs(float x); // as shown by these prototypes.

void main()

{

 int ians; // To hold return values.

 float fans;

 int i = -15; // To pass to the two overloaded functions.

 float x = -64.53;

 ians = abs(i); // C++ calls the integer abs().

 cout << “Integer absolute value of -15 is “ << ians << “\n”;

 fans = abs(x); // C++ calls the floating-point abs().

 cout << “Float absolute value of -64.53 is “ <<

 setprecision(2) << fans << “\n”;

 // Notice that you no longer have to keep track of two

 // different names. C++ calls the appropriate

 // function that matches the parameters.

 return;

}

int abs(int i) // Integer absolute value function

{

 if (i < 0)

 { return (i * -1); } // Makes positive.

 else

 { return (i); } // Already positive.

}

Chapter 20 ♦ Default Arguments and Function Overloading

424

float abs(float x) // Floating-point absolute value function

{

 if (x < 0.0)

 { return (x * -1.0); } // Makes positive.

 else

 { return (x); } // Already positive.

}

The output from this program follows:

Integer absolute value of -15 is 15

Float absolute value of -64.53 is 64.53

2. As you write more and more C++ programs, you will see

many uses for overloaded functions. The following program

is a demonstration program showing how you can build

your own output functions to suit your needs. main() calls

three functions named output(). Each time it’s called, main()

passes a different value to the function.

When main() passes output() a string, output() prints the

string, formatted to a width (using the setw() manipulator

described in Chapter 7, “Simple Input/Output”) of 30

characters. When main() passes output() an integer, output()

prints the integer with a width of five. When main() passes

output() a floating-point value, output() prints the value to

two decimal places and generalizes the output of different

types of data. You do not have to format your own data.

output() properly formats the data and you only have to

remember one function name that outputs all three types of

data.

// Filename: C20OVF2.CPP

// Outputs three different types of

// data with same function name.

#include <iostream.h>

#include <iomanip.h>

void output(char []); // Prototypes for overloaded functions.

void output(int i);

void output(float x);

425

EXAMPLE
C++ By

void main()

{

 char name[] = “C++ By Example makes C++ easy!”;

 int ivalue = 2543;

 float fvalue = 39.4321;

 output(name); // C++ chooses the appropriate function.

 output(ivalue);

 output(fvalue);

return;

}

void output(char name[])

{

 cout << setw(30) << name << “\n”;

 // The width truncates string if it is longer than 30.

 return;

}

void output(int ivalue)

{

 cout << setw(5) << ivalue << “\n”;

 // Just printed integer within a width of five spaces.

 return;

}

void output(float fvalue)

{

 cout << setprecision(2) << fvalue << “\n”;

 // Limited the floating-point value to two decimal places.

 return;

}

Here is the output from this program:

C++ By Example makes C++ easy!

2543

39.43

Each of the three lines, containing three different lines of

information, was printed with the same function call.

Chapter 20 ♦ Default Arguments and Function Overloading

426

Review Questions
The answers to the review questions are in Appendix B.

1. Where in the program do you specify the defaults for default

argument lists?

2. What is the term for C++ functions that have the same

name?

3. Does name-mangling help support default argument lists or

overloaded functions?

4. True or false: You can specify only a single default

argument.

5. Fix the following prototype for a default argument list.

void my_fun(int i=7, float x, char ch=’A’);

6. True or false: The following prototypes specify overloaded

functions:

int sq_rt(int n);

float sq_rt(int n);

Review Exercises
1. Write a program that contains two functions. The first

function returns the square of the integer passed to it, and

the second function returns the square of the float passed

to it.

2. Write a program that computes net pay based on the values

the user types. Ask the user for the hours worked, the rate

per hour, and the tax rate. Because the majority of employees

work 40 hours per week and earn $5.00 per hour, use these

values as default values in the function that computes the

net pay. If the user presses Enter in response to your ques-

tions, use the default values.

427

EXAMPLE
C++ By

Summary
Default argument lists and overloaded functions speed up

your programming time. You no longer have to specify values for

common arguments. You do not have to remember several different

names for those functions that perform similar routines and differ

only in their data types.

The remainder of this book elaborates on earlier concepts so

you can take advantage of separate, modular functions and local

data. You are ready to learn more about how C++ performs input

and output. Chapter 21, “Device and Character Input/Output,”

teaches you the theory behind I/O in C++, and introduces more

built-in functions.

Chapter 20 ♦ Default Arguments and Function Overloading

428

