
431

EXAMPLE
C++ By

21

Device and
Character
Input/Output

Unlike many programming languages, C++ contains no input or

output commands. C++ is an extremely portable language; a C++

program that compiles and runs on one computer is able also to

compile and run on another type of computer. Most incompatibili-

ties between computers reside in their input/output mechanics.

Each different device requires a different method of performing

I/O (Input/Output).

By putting all I/O capabilities in common functions supplied

with each computer’s compiler, not in C++ statements, the design-

ers of C++ ensured that programs were not tied to specific hardware

for input and output. A compiler has to be modified for every

computer for which it is written. This ensures the compiler works

with the specific computer and its devices. The compiler writers

write I/O functions for each machine; when your C++ program

writes a character to the screen, it works the same whether you have

a color PC screen or a UNIX X/Windows terminal.

This chapter shows you additional ways to perform input and

output of data besides the cin and cout functions you have seen

Chapter 21 ♦ Device and Character Input/Output

432

C++ views input and
output from all
devices as streams
of characters.

throughout the book. By providing character-based I/O functions,

C++ gives you the basic I/O functions you need to write powerful

data entry and printing routines.

This chapter introduces you to

♦ Stream input and output

♦ Redirecting I/O

♦ Printing to the printer

♦ Character I/O functions

♦ Buffered and nonbuffered I/O

By the time you finish this chapter, you will understand the

fundamental built-in I/O functions available in C++. Performing

character input and output, one character at a time, might sound like

a slow method of I/O. You will soon realize that character I/O

actually enables you to create more powerful I/O functions than cin

and cout.

Stream and Character I/O
C++ views all input and output as streams of characters.

Whether your program receives input from the keyboard, a disk file,

a modem, or a mouse, C++ only views a stream of characters. C++

does not have to know what type of device is supplying the input;

the operating system handles the device specifics. The designers of

C++ want your programs to operate on characters of data without

regard to the physical method taking place.

This stream I/O means you can use the same functions to

receive input from the keyboard as from the modem. You can use the

same functions to write to a disk file, printer, or screen. Of course,

you have to have some way of routing that stream input or output

to the proper device, but each program’s I/O functions works in a

similar manner. Figure 21.1 illustrates this concept.

433

EXAMPLE
C++ By

Figure 21.1. All I/O consists of streams of characters.

The Newline Special Character: /n

Portability is the key to C++’s success. Few companies have the

resources to rewrite every program they use when they change

computer equipment. They need a programming language

that works on many platforms (hardware combinations). C++

achieves true portability better than almost any other program-

ming language.

It is because of portability that C++ uses the generic newline

character, \n, rather than the specific carriage return and line

feed sequences other languages use. This is why C++ uses the

\t for tab, as well as the other control characters used in I/O

functions.

If C++ used ASCII code to represent these special characters,

your programs would not be portable. You would write a C++

program on one computer and use a carriage return value such

as 12, but 12 might not be the carriage return value on another

type of computer.

By using newline and the other control characters available in

C++, you ensure your program is compatible with any com-

puter on which it is compiled. The specific compilers substitute

their computer’s actual codes for the control codes in your

programs.

Chapter 21 ♦ Device and Character Input/Output

434

Standard Devices

Table 21.1 shows a listing of standard I/O devices. C++ always

assumes input comes from stdin, meaning the standard input device.
This is usually the keyboard, although you can reroute this default.

C++ assumes all output goes to stdout, or the standard output device.
There is nothing magic in the words stdin and stdout; however,

many people learn their meanings for the first time in C++.

Table 21.1. Standard Devices in C++.

Description C++ Name MS-DOS Name

Screen stdout CON:

Keyboard stdin CON:

Printer stdprn PRN: or LPT1:

Serial Port stdaux AUX: or COM1:

Error Messages stderr CON:

Disk Files none Filename

Take a moment to study Table 21.1. You might think it is

confusing that three devices are named CON:. MS-DOS differenti-

ates between the screen device called CON: (which stands for

console), and the keyboard device called CON: from the context of

the data stream. If you send an output stream (a stream of characters)

to CON:, MS-DOS routes it to the screen automatically. If you

request input from CON:, MS-DOS retrieves the input from the

keyboard. (These defaults hold true as long as you have not redi-

rected these devices, as shown below.) MS-DOS sends all error

messages to the screen (CON:) as well.

NOTE: If you want to route I/O to a second printer or serial

port, see how to do so in Chapter 30, “Sequential Files.”

435

EXAMPLE
C++ By

Redirecting Devices from MS-DOS

The reason cout goes to the screen is simply because stdout is

routed to the screen, by default, on most computers. The reason cin

inputs from the keyboard is because most computers consider the

keyboard to be the standard input device, stdin. After compiling

your program, C++ does not send data to the screen or retrieve it

from the keyboard. Instead, the program sends output to stdout and

receives input from stdin. The operating system routes the data to

the appropriate device.

MS-DOS enables you to reroute I/O from their default loca-

tions to other devices through the use of the output redirection symbol,
>, and the input redirection symbol, <. The goal of this book is not to

delve deeply in operating-system redirection. To learn more about

the handling of I/O, read a good book on MS-DOS, such as Using
MS-DOS 5.

Basically, the output redirection symbol informs the operating

system that you want standard output to go to a device other than

the default (the screen). The input redirection symbol routes input

away from the keyboard to another input device. The following

example illustrates how this is done in MS-DOS.

Examples

1. Suppose you write a program that uses only cin and cout for

input and output. Instead of receiving input from the key-

board, you want the program to get the input from a file

called MYDATA. Because cin receives input from stdin, you

must redirect stdin. After compiling the program in a file

called MYPGM.EXE, you can redirect its input away from

the keyboard with the following DOS command:

C:>MYPGM < MYDATA

Of course, you can include a full pathname either before the

program name or filename. There is a danger in redirecting

all output such as this, however. All output, including screen

prompts for keyboard input, goes to MYDATA. This is

probably not acceptable to you in most cases; you still want

The operating
system gives you
control over devices.

Chapter 21 ♦ Device and Character Input/Output

436

prompts and some messages to go to the screen. In the next

section, you learn how to separate I/O, and send some

output to one device such as the screen and the rest to

another device, such as a file or printer.

2. You can also route the program’s output to the printer by

typing this:

C:>MYPGM > PRN:

Route MYPGM output to the printer.

3. If the program required much input, and that input were

stored in a file called ANSWERS, you could override the

keyboard default device that cin uses, as in:

C:>MYPGM < ANSWERS

The program reads from the file called ANSWERS every time cin
required input.

4. You can combine redirection symbols. If you want input

from the ANSWERS disk file, and want to send the output to

the printer, do the following:

C:>MYPGM < ANSWERS > PRN:

TIP: You can route the output to a serial printer or a second

parallel printer port by substituting COM1: or LPT2: for PRN:.

Printing Formatted Output to
the Printer

It’s easy to send program output to the printer using the

ofstream function. The format of ofstream is

ofstream device(device_name);

ofstream allows
your program to
write to the printer.

437

EXAMPLE
C++ By

The following examples show how you can combine cout and

ofstream to write to both the screen and printer.

Example

The following program asks the user for his or her first and last

name. It then prints the name, last name first, to the printer.

// Filename: C21FPR1.CPP

// Prints a name on the printer.

#include <fstream.h>

void main()

{

 char first[20];

 char last[20];

 cout << “What is your first name? “;

 cin >> first;

 cout << “What is your last name? “;

 cin >> last;

 // Send names to the printer.

 ofstream prn(“PRN”);

 prn << “In a phone book, your name looks like this: \n”;

 prn << last << “, “ << first << “\n”;

 return;

}

Character I/O Functions
Because all I/O is actually character I/O, C++ provides many

functions you can use that perform character input and output. The

cout and cin functions are called formatted I/O functions because they

give you formatting control over your input and output. The cout

and cin functions are not character I/O functions.

ofstream uses
the fstream.h header
file.

Chapter 21 ♦ Device and Character Input/Output

438

There’s nothing wrong with using cout for formatted output,

but cin has many problems, as you have seen. You will now see how

to write your own character input routines to replace cin, as well as

use character output functions to prepare you for the upcoming

section in this book on disk files.

The get() and put() Functions

The most fundamental character I/O functions are get() and

put(). The put() function writes a single character to the standard

output device (the screen if you don’t redirect it from your operating

system). The get() function inputs a single character from the

standard input device (the keyboard by default).

The format for get() is

device.get(char_var);

The get() device can be any standard input device. If you were

receiving character input from the keyboard, you use cin as the

device. If you initialize your modem and want to receive characters

from it, use ofstream to open the modem device and read from the

device.

The format of put() is

device.put(char_val);

The char_val can be a character variable, expression, or con-

stant. You output character data with put(). The device can be any

standard output device. To write a character to your printer, you

open PRN with ofstream.

Examples

1. The following program asks the user for her or his initials a

character at a time. Notice the program uses both cout and

put(). The cout is still useful for formatted output such as

messages to the user. Writing individual characters is best

achieved with put().

The program has to call two get() functions for each char-

acter typed. When you answer a get() prompt by typing a

get() and put()
input and output
characters from and
to any standard
devices.

439

EXAMPLE
C++ By

character followed by an Enter keypress, C++ interprets the

input as a stream of two characters. The get() first receives

the letter you typed, then it has to receive the \n (newline,

supplied to C++ when you press Enter). There are examples

that follow that fix this double get() problem.

// Filename: C21CH1.CPP

// Introduces get() and put().

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(last);

return;

}

Here is the output from this program:

What is your first name initial? G

What is your last name initial? P

Here they are:

GP

2. You can add carriage returns to space the output better. To

print the two initials on two separate lines, use put() to put a

newline character to cout, as the following program does:

Chapter 21 ♦ Device and Character Input/Output

440

// Filename: C21CH2.CPP

// Introduces get() and put() and uses put() to output

newline.

#include <fstream.h>

void main()

{

 char in_char; // Holds incoming initial.

 char first, last; // Holds converted first and last

 // initial.

 cout << “What is your first name initial? “;

 cin.get(in_char); // Waits for first initial.

 first = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “What is your last name initial? “;

 cin.get(in_char); // Waits for last initial.

 last = in_char;

 cin.get(in_char); // Ignores newline.

 cout << “\nHere they are: \n”;

 cout.put(first);

 cout.put(‘\n’);

 cout.put(last);

return;

}

3. It might have been clearer to define the newline character as

a constant. At the top of the program, you have:

const char NEWLINE=’\n’

The put() then reads:

cout.put(NEWLINE);

Some programmers prefer to define their character formatting

constants and refer to them by name. It’s up to you to decide whether

you want to use this method, or whether you want to continue using

the \n character constant in put().

The get() function is a buffered input function. As you type

characters, the data does not immediately go to your program,

441

EXAMPLE
C++ By

rather, it goes to a buffer. The buffer is a section of memory (and has

nothing to do with your PC’s type-ahead buffers) managed by C++.

Figure 21.2 shows how this buffered function works. When

your program approaches a get(), the program temporarily waits as

you type the input. The program doesn’t view the characters, as

they’re going to the buffer of memory. There is practically no limit

to the size of the buffer; it fills with input until you press Enter. Your

Enter keypress signals the computer to release the buffer to your

program.

Figure 21.2. get() input goes to a buffer. The buffer is released when
you press Enter.

Most PCs accept either buffered or nonbuffered input. The

getch() function shown later in this chapter is nonbuffered. With

get(), all input is buffered. Buffered text affects the timing of your

program’s input. Your program receives no characters from a get()

until you press Enter. Therefore, if you ask a question such as

Do you want to see the report again (Y/N)?

and use get() for input, the user can press a Y, but the program does

not receive the input until the user also presses Enter. The Y and

Enter then are sent, one character at a time, to the program where it

processes the input. If you want immediate response to a user’s

typing (such as the INKEY$ in BASIC allows), you have to use getch().

Buffer

Chapter 21 ♦ Device and Character Input/Output

442

TIP: By using buffered input, the user can type a string of

characters in response to a loop with get(), receive characters,

and correct the input with Backspace before pressing Enter. If

the input were nonbuffered, the Backspace would be another

character of data.

Example

C21CH2.CPP must discard the newline character. It did so by

assigning the input character—from get()—to an extra variable.

Obviously, the get() returns a value (the character typed). In this

case, it’s acceptable to ignore the return value by not using the

character returned by get(). You know the user has to press Enter (to

end the input) so it’s acceptable to discard it with an unused get()

function call.

When inputting strings such as names and sentences, cin only

allows one word to be entered at a time. The following string asks the

user for his or her full name with these two lines:

cout << “What are your first and last names? “;

cin >> names; // Receive name in character array names.

The array names only receives the first name; cin ignores all data

to the right of the first space.

You can build your own input function using get() that doesn’t

have a single-word limitation. When you want to receive a string of

characters from the user, such as his or her first and last name, you

can call the get_in_str() function shown in the next program.

The main() function defines an array and prompts the user for

a name. After the prompt, the program calls the get_in_str() func-

tion and builds the input array a character at a time using get(). The

function keeps looping, using the while loop, until the user presses

Enter (signaled by the newline character, \n, to C++) or until the

maximum number of characters are typed. You might want to use

When receiving
characters, you
might have to
discard the newline
keypress.

443

EXAMPLE
C++ By

this function in your own programs. Be sure to pass it a character

array and an integer that holds the maximum array size (you don’t

want the input string to be longer than the character array that holds

it). When control returns to main() (or whatever function called

get_in_str()), the array has the user’s full input, including the

spaces.

// Filename: C21IN.CPP

// Program that builds an input string array using get().

#include <fstream.h>

void get_in_str(char str[], int len);

const int MAX=25; // Size of character array to be typed.

void main()

{

 char input_str[MAX]; // Keyboard input fills this.

 cout << “What is your full name? “;

 get_in_str(input_str, MAX); // String from keyboard

 cout << “After return, your name is “ << input_str << “\n”;

 return;

}

//**

// The following function requires a string and the maximum

// length of the string be passed to it. It accepts input

// from the keyboard, and sends keyboard input in the string.

// On return, the calling routine has access to the string.

//**

void get_in_str(char str[], int len)

{

 int i = 0; // index

 char input_char; // character typed

 cin.get(input_char); // Get next character in string.

 while (i < (len - 1) && (input_char != ‘\n’))

 {

 str[i] = input_char; // Build string a character

Chapter 21 ♦ Device and Character Input/Output

444

 i++; // at a time.

 cin.get(input_char); // Receive next character in string.

 }

 str[i] = ‘\0’; // Make the char array a string.

 return;

}

NOTE: The loop checks for len - 1 to save room for the null-

terminating zero at the end of the input string.

The getch() and putch() Functions

The functions getch() and putch() are slightly different from the

previous character I/O functions. Their format is similar to get()

and put(); they read from the keyboard and write to the screen and

cannot be redirected, even from the operating system. The formats

of getch() and putch() are

int_var = getch();

and

putch(int_var);

getch() and putch() are not AT&T C++ standard functions, but

they are usually available with most C++ compilers. getch() and

putch() are nonbuffered functions. The putch() character output

function is a mirror-image function to getch(); it is a nonbuffered

output function. Because almost every output device made, except

for the screen and modem, are inherently buffered, putch() effec-

tively does the same thing as put().

Another difference in getch() from the other character input

functions is that getch() does not echo the input characters on the

screen as it receives them. When you type characters in response to

get(), you see the characters as you type them (as they are sent to the

buffer). If you want to see characters received by getch(), you must

follow getch() with a putch(). It is handy to echo the characters on the

screen so the user can verify that she or he has typed correctly.

getch() and
putch() offer
nonbuffered input
and output that grab
the user’s characters
immediately after the
user types them.

445

EXAMPLE
C++ By

Some programmers want to make the user press Enter after

answering a prompt or selecting from a menu. They feel the extra

time given with buffered input gives the user more time to decide if

she or he wants to give that answer; the user can press Backspace and

correct the input before pressing Enter.

Other programmers like to grab the user’s response to a single-

character answer, such as a menu response, and act on it immedi-

ately. They feel that pressing Enter is an added and unneeded

burden for the user so they use getch(). The choice is yours. You

should understand both buffered and nonbuffered input so you can

use both.

TIP: You can also use getche(). getche() is a nonbuffered input

identical to getch(), except the input characters are echoed

(displayed) to the screen as the user types them. Using getche()

rather than getch() keeps you from having to call a putch() to

echo the user’s input to the screen.

Example

The following program shows the getch() and putch() func-

tions. The user is asked to enter five letters. These five letters are

added (by way of a for loop) to the character array named letters.

As you run this program, notice that the characters are not echoed

to the screen as you type them. Because getch() is unbuffered, the

program actually receives each character, adds it to the array, and

loops again, as you type them. (If this were buffered input, the

program would not loop through the five iterations until you

pressed Enter.)

A second loop prints the five letters using putch(). A third loop

prints the five letters to the printer using put().

// Filename: C21GCH1.CPP

// Uses getch() and putch() for input and output.

#include <fstream.h>

Characters input
with getch() are
not echoed to the
screen as the user
types them.

getch() and
putch() use the
conio.h header file.

Chapter 21 ♦ Device and Character Input/Output

446

#include <conio.h>

void main()

{

 int ctr; // for loop counter

 char letters[5]; // Holds five input characters. No

 // room is needed for the null zero

 // because this array never will be

 // treated as a string.

 cout << “Please type five letters... \n”;

 for (ctr = 0; ctr < 5; ctr++)

 {

 letters[ctr] = getch(); // Add input to array.

 }

 for (ctr = 0; ctr < 5; ctr++) // Print them to screen.

 {

 putch(letters[ctr]);

 }

 ofstream prn(“PRN”);

 for (ctr = 0; ctr < 5; ctr++) // Print them to printer.

 {

 prn.put(letters[ctr]);

 }

return;

}

When you run this program, do not press Enter after the five

letters. The getch() function does not use the Enter. The loop auto-

matically ends after the fifth letter because of the unbuffered input

and the for loop.

Review Questions
The answers to the review questions are found in Appendix B.

1. Why are there no input or output commands in C++?

2. True or false: If you use the character I/O functions to send

output to stdout, it always goes to the screen.

447

EXAMPLE
C++ By

3. What is the difference between getch() and get()?

4. What function sends formatted output to devices other than

the screen?

5. What are the MS-DOS redirection symbols?

6. What nonstandard function, most similar to getch(), echoes

the input character to the screen as the user types it?

7. True or false: When using get(), the program receives your

input as you type it.

8. Which keypress releases the buffered input to the program?

9. True or false: Using devices and functions described in this

chapter, it is possible to write one program that sends some

output to the screen, some to the printer, and some to the

modem.

Review Exercises
1. Write a program that asks the user for five letters and prints

them in reverse order to the screen, and then to the printer.

2. Write a miniature typewriter program, using get() and put().

In a loop, get characters until the user presses Enter while he

or she is getting a line of user input. Write the line of user

input to the printer. Because get() is buffered, nothing goes

to the printer until the user presses Enter at the end of each

line of text. (Use the string-building input function shown in

C21IN.CPP.)

3. Add a putch() inside the first loop of C21CH1.CPP (this

chapter’s first get() example program) so the characters are

echoed to the screen as the user types them.

4. A palindrome is a word or phrase spelled the same forwards

and backwards. Two example palindromes are

Madam, I’m Adam

Golf? No sir, prefer prison flog!

Chapter 21 ♦ Device and Character Input/Output

448

Write a C++ program that asks the user for a phrase. Build

the input, a character at a time, using a character input

function such as get(). Once you have the full string (store it

in a character array), determine whether the phrase is a

palindrome. You have to filter special characters (nonalpha-

betic), storing only alphabetic characters to a second charac-

ter array. You also must convert the characters to uppercase

as you store them. The first palindrome becomes:

MADAMIMADAM

Using one or more for or while loops, you can now test the

phrase to determine whether it is a palindrome. Print the

result of the test on the printer. Sample output should look

like:

“Madam, I’m Adam” is a palindrome.

Summary
You now should understand the generic methods C++ pro-

grams use for input and output. By writing to standard I/O devices,

C++ achieves portability. If you write a program for one computer,

it works on another. If C++ were to write directly to specific

hardware, programs would not work on every computer.

If you still want to use the formatted I/O functions, such as cout,

you can do so. The ofstream() function enables you to write format-

ted output to any device, including the printer.

The methods of character I/O might seem primitive, and they

are, but they give you the flexibility to build and create your own

input functions. One of the most often-used C++ functions, a string-

building character I/O function, was demonstrated in this chapter

(the C21IN.CPP program).

The next two chapters (Chapter 22, “Character, String, and

Numeric Functions,” and Chapter 23, “Introducing Arrays”) intro-

duce many character and string functions, including string I/O

functions. The string I/O functions build on the principles pre-

sented here. You will be surprised at the extensive character and

string manipulation functions available in the language as well.

