
473

EXAMPLE
C++ By

23

Introducing Arrays

This chapter discusses different types of arrays. You are already

familiar with character arrays, which are the only method for storing

character strings in the C++ language. A character array isn’t the

only kind of array you can use, however. There is an array for every

data type in C++. By learning how to process arrays, you greatly

improve the power and efficiency of your programs.

This chapter introduces

♦ Array basics of names, data types, and subscripts

♦ Initializing an array at declaration time

♦ Initializing an array during program execution

♦ Selecting elements from arrays

The sample programs in these next few chapters are the most

advanced that you have seen in this book. Arrays are not difficult to

use, but their power makes them well-suited to more advanced

programming.

Chapter 23 ♦ Introducing Arrays

474

Array Basics
Although you have seen arrays used as character strings, you

still must have a review of arrays in general. An array is a list of more

than one variable having the same name. Not all lists of variables are

arrays. The following list of four variables, for example, does not

qualify as an array.

sales bonus_92 first_initial ctr

This is a list of variables (four of them), but it isn’t an array

because each variable has a different name. You might wonder how

more than one variable can have the same name; this seems to violate

the rules for variables. If two variables have the same name, how can

C++ determine which you are referring to when you use that name?

Array variables, or array elements, are differentiated by a

subscript, which is a number inside brackets. Suppose you want to

store a person’s name in a character array called name. You can do

this with

char name[] = “Ray Krebbs”;

or

char name[11] = “Ray Krebbs”;

Because C++ reserves an extra element for the null zero at the

end of every string, you don’t have to specify the 11 as long as you

initialize the array with a value. The variable name is an array because

brackets follow its name. The array has a single name, name, and it

contains 11 elements. The array is stored in memory, as shown in

Figure 23.1. Each element is a character.

NOTE: All array subscripts begin with 0.

You can manipulate individual elements in the array by refer-

encing their subscripts. For instance, the following cout prints Ray’s

initials.

Print the first and fifth elements of the array called name.

cout << name[0] << “ “ << name[4];

An array is a list of
more than one
variable having the
same name.

475

EXAMPLE
C++ By

Figure 23.1. Storing the name character array in memory.

You can define an array as any data type in C++. You can have

integer arrays, long integer arrays, double floating-point arrays,

short integer arrays, and so on. C++ recognizes that the brackets []

following the array name signify that you are defining an array, and

not a single nonarray variable.

The following line defines an array called ages, consisting of

five integers:

int ages[5];

The first element in the ages array is ages[0]. The second element

is ages[1], and the last one is ages[4]. This declaration of ages does not

assign values to the elements, so you don’t know what is in ages and

your program does not automatically zero ages for you.

Here are some more array definitions:

int weights[25], sizes[100]; // Declare two integer arrays.

float salaries[8]; // Declare a floating-point array.

double temps[50]; // Declare a double floating-point

 // array.

char letters[15]; // Declare an array of characters.

When you declare an array, you instruct C++ to reserve a

specific number of memory locations for that array. C++ protects

Chapter 23 ♦ Introducing Arrays

476

those elements. In the previous lines of code, if you assign a value to

letters[2] you don’t overwrite any data in weights, sizes, salaries, or

temps. Also, if you assign a value to sizes[94], you don’t overwrite

data stored in weights, salaries, temps, or letters.

Each element in an array occupies the same amount of storage

as a nonarray variable of the same data type. In other words, each

element in a character array occupies one byte. Each element in an

integer array occupies two or more bytes of memory—depending

on the computer’s internal architecture. The same is true for every

other data type.

Your program can reference elements by using formulas for

subscripts. As long as the subscript can evaluate to an integer, you

can use a literal, a variable, or an expression for the subscript. All the

following are references to individual array elements:

ara[4]

sales[ctr+1]

bonus[month]

salary[month[i]*2]

All array elements are stored in a contiguous, back-to-back

fashion. This is important to remember, especially as you write more

advanced programs. You can always count on an array’s first

element preceding the second. The second element is always placed

immediately before the third, and so on. Memory is not “padded”;

meaning that C++ guarantees there is no extra space between array

elements. This is true for character arrays, integer arrays, floating-

point arrays, and every other type of array. If a floating-point value

occupies four bytes of memory on your computer, the next element

in a floating-point array always begins exactly four bytes after the

previous element.

The Size of Arrays

The sizeof() function returns the number of bytes needed to

hold its argument. If you request the size of an array name,

sizeof() returns the number of bytes reserved for the entire

array.

Array elements
follow each other in
memory, with
nothing between
them.

477

EXAMPLE
C++ By

For example, suppose you declare an integer array of 100

elements called scores. If you were to find the size of the array,

as in the following,

n = sizeof(scores);

n holds either 200 or 400 bytes, depending on the integer size of

your computer. The sizeof() function always returns the re-

served amount of storage, no matter what data are in the array.

Therefore, a character array’s contents—even if it holds a very

short string—do not affect the size of the array that was

originally reserved in memory. If you request the size of an

individual array element, however, as in the following,

n = sizeof(scores[6]);

n holds either 2 or 4 bytes, depending on the integer size of your

computer.

You must never go out-of-bounds of any array. For example,

suppose you want to keep track of the exemptions and salary codes

of five employees. You can reserve two arrays to hold such data, like

this:

int exemptions[5]; // Holds up to five employee exemptions.

char sal_codes[5]; // Holds up to five employee codes.

Figure 23.2 shows how C++ reserves memory for these arrays.

The figure assumes a two-byte integer size, although this might

differ on some computers. Notice that C++ reserves five elements

for exemptions from the array declaration. C++ starts reserving

memory for sal_codes after it reserves all five elements for exemptions.

If you declare several more variables—either locally or globally—

after these two lines, C++ always protects these reserved five

elements for exemptions and sal_codes.

Because C++ does its part to protect data in the array, so must

you. If you reserve five elements for exemptions, you have five inte-

ger array elements referred to as exemptions[0], exemptions[1],

exemptions[2], exemptions[3], and exemptions[4]. C++ does not protect

C++ protects only as
many array elements
as you specify.

Chapter 23 ♦ Introducing Arrays

478

more than five elements for exemptions! Suppose you put a value in

an exemptions element you did not reserve:

exemptions[6] = 4; // Assign a value to an

 // out-of-range element.

Figure 23.2. Locating two arrays in memory.

C++ enables you to do this—but the results are damaging! C++

overwrites other data (in this case, sal_codes[2] and sal_codes[3]

because they are reserved in the location of the seventh element of

exemptions). Figure 23.3 shows the damaging results of assigning a

value to an out-of-range element.

Figure 23.3. The arrays in memory after overwriting part of sal_codes.

Although you can define an array of any data type, you cannot

declare an array of strings. A string is not a C++ variable data type.

You learn how to hold multiple strings in an array-like structure in

Chapter 27, “Pointers and Arrays.”

479

EXAMPLE
C++ By

CAUTION: Unlike most programming languages, AT&T

C++ enables you to assign values to out-of-range (nonreserved)

subscripts. You must be careful not to do this; otherwise, you

start overwriting your other data or code.

Initializing Arrays
You must assign values to array elements before using them.

Here are the two ways to initialize elements in an array:

♦ Initialize the elements at declaration time

♦ Initialize the elements in the program

NOTE: C++ automatically initializes global arrays to null

zeros. Therefore, global character array elements are null, and

all numeric array elements contain zero. You should limit your

use of global arrays. If you use global arrays, explicitly initialize

them to zero, even though C++ does this for you, to clarify your

intentions.

Initializing Elements
at Declaration Time

You already know how to initialize character arrays that hold

strings when you define the arrays: You simply assign them a string.

For example, the following declaration reserves six elements in a

character array called city:

char city[6]; // Reserve space for city.

If you want also to initialize city with a value, you can do it like

this:

char city[6] = “Tulsa”; // Reserve space and

 // initialize city.

Chapter 23 ♦ Introducing Arrays

480

The 6 is optional because C++ counts the elements needed to

hold Tulsa, plus an extra element for the null zero at the end of the

quoted string.

You also can reserve a character array and initialize it —a single

character at a time—by placing braces around the character data.

The following line of code declares an array called initials and

initializes it with eight characters:

char initials[8] = {‘Q’, ‘K’, ‘P’, ‘G’, ‘V’, ‘M’, ‘U’, ‘S’};

The array initials is not a string! Its data does not end in a null

zero. There is nothing wrong with defining an array of characters

such as this one, but you must remember that you cannot treat the

array as if it were a string. Do not use string functions with it, or

attempt to print the array with cout.

By using brackets, you can initialize any type of array. For

example, if you want to initialize an integer array that holds your

five children’s ages, you can do it with the following declaration:

int child_ages[5] = {2, 5, 6, 8, 12}; // Declare and

 // initialize array.

In another example, if you want to keep track of the previous

three years’ total sales, you can declare an array and initialize it at

the same time with the following:

double sales[] = {454323.43, 122355.32, 343324.96};

As with character arrays, you do not have to state explicitly the

array size when you declare and initialize an array of any type. C++

determines, in this case, to reserve three double floating-point array

elements for sales. Figure 23.4 shows the representation of child_ages

and sales in memory.

NOTE: You cannot initialize an array, using the assignment

operator and braces, after you declare it. You can initialize

arrays in this manner only when you declare them. If you want

to fill an array with data after you declare the array, you must

do so element-by-element or by using functions as described in

the next section.

481

EXAMPLE
C++ By

Figure 23.4. In-memory representation of two different types of arrays.

Although C++ does not automatically initialize the array ele-

ments, if you initialize some but not all the elements when you

declare the array, C++ finishes the job for you by assigning the

remainder to zero.

TIP: To initialize every element of a large array to zero at the

same time, declare the entire array and initialize only its first

value to zero. C++ fills the rest of the array to zero.

For instance, suppose you have to reserve array storage for

profit figures of the three previous months as well as the three

months to follow. You must reserve six elements of storage, but you

know values for only the first three. You can initialize the array as

follows:

double profit[6] = {67654.43, 46472.34, 63451.93};

Because you explicitly initialized three of the elements, C++

initializes the rest to zero. If you use cout to print the entire array,

one element per line, you receive:

67654.43

46472.34

63451.93

00000.00

00000.00

00000.00

C++ assigns zero
nulls to all array
values that you do
not define explicitly
at declaration time.

child–ages

sales

Floating-points

Integers

Chapter 23 ♦ Introducing Arrays

482

CAUTION: Always declare an array with the maximum

number of subscripts, unless you initialize the array at the same

time. The following array declaration is illegal:

int count[]; // Bad array declaration!

C++ does not know how many elements to reserve for count, so

it reserves none. If you then assign values to count’s nonreserved

elements, you can (and probably will) overwrite other data.

The only time you can leave the brackets empty is if you also

assign values to the array, such as the following:

int count[] = {15, 9, 22, -8, 12}; // Good definition.

C++ can determine, from the list of values, how many elements

to reserve. In this case, C++ reserves five elements for count.

Examples

1. Suppose you want to track the stock market averages for the

previous 90 days. Instead of storing them in 90 different

variables, it is much easier to store them in an array. You can

declare the array like this:

float stock[90];

The remainder of the program can assign values to the

averages.

2. Suppose you just finished taking classes at a local university

and want to average your six class scores. The following

program initializes one array for the school name and an-

other for the six classes. The body of the program averages

the six scores.

// Filename: C23ARA1.CPP

// Averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void main()

483

EXAMPLE
C++ By

{

 char s_name[] = “Tri Star University”;

 float scores[6] = {88.7, 90.4, 76.0, 97.0, 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Computes total of scores.

 for (ctr=0; ctr<6; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(6);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average << “\n”;

 return;

}

The output follows:

At Tri Star University, your class average is 89.8.

Notice that using arrays makes processing lists of informa-

tion much easier. Instead of averaging six differently named

variables, you can use a for loop to step through each array

element. If you had to average 1000 numbers, you can still

do so with a simple for loop, as in this example. If the 1000

variables were not in an array, but were individually named,

you would have to write a considerable amount of code just

to add them.

3. The following program is an expanded version of the previ-

ous one. It prints the six scores before computing the aver-

age. Notice that you must print array elements individually;

you cannot print an entire array in a single cout. (You can

print an entire character array with cout, but only if it holds a

null-terminated string of characters.)

// Filename: C23ARA2.CPP

// Prints and averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void pr_scores(float scores[]); // Prototype

Chapter 23 ♦ Introducing Arrays

484

void main()

{

 char s_name[] = “Tri Star University”;

 float scores[6] = {88.7, 90.4, 76.0, 97.0, 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Call function to print scores.

 pr_scores(scores);

 // Computes total of scores.

 for (ctr=0; ctr<6; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(6);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average;

 return;

}

void pr_scores(float scores[6])

{

 // Prints the six scores.

 int ctr;

 cout << “Here are your scores:\n”; // Title

 for (ctr=0; ctr<6; ctr++)

 cout << setprecision(2) << scores[ctr] << “\n”;

 return;

}

To pass an array to a function, you must specify its name

only. In the receiving function’s parameter list, you must

state the array type and include its brackets, which tell the

function that it is an array. (You do not explicitly have to

state the array size in the receiving parameter list, as shown

in the prototype.)

485

EXAMPLE
C++ By

4. To improve the maintainability of your programs, define all

array sizes with the const instruction. What if you took four

classes next semester but still wanted to use the same pro-

gram? You can modify it by changing all the 6s to 4s, but if

you had defined the array size with a constant, you have to

change only one line to change the program’s subscript

limits. Notice how the following program uses a constant for

the number of classes.

// Filename: C23ARA3.CPP

// Prints and averages six test scores.

#include <iostream.h>

#include <iomanip.h>

void pr_scores(float scores[]);

const int CLASS_NUM = 6; // Constant holds array size.

void main()

{

 char s_name[] = “Tri Star University”;

 float scores[CLASS_NUM] = {88.7, 90.4, 76.0, 97.0,

 100.0, 86.7};

 float average=0.0;

 int ctr;

 // Calls function to print scores.

 pr_scores(scores);

 // Computes total of scores.

 for (ctr=0; ctr<CLASS_NUM; ctr++)

 { average += scores[ctr]; }

 // Computes the average.

 average /= float(CLASS_NUM);

 cout << “At “ << s_name << “, your class average is “

 << setprecision(2) << average;

 return;

}

void pr_scores(float scores[CLASS_NUM])

Chapter 23 ♦ Introducing Arrays

486

{

 // Prints the six scores.

 int ctr;

 cout << “Here are your scores:\n”; // Title

 for (ctr=0; ctr<CLASS_NUM; ctr++)

 cout << setprecision(2) << scores[ctr] << “\n”;

 return;

}

For such a simple example, using a constant for the maxi-

mum subscript might not seem like a big advantage. If you

were writing a larger program that processed several arrays,

however, changing the constant at the top of the program

would be much easier than searching the program for each

occurrence of that array reference.

Using constants for array sizes has the added advantage

of protecting you from going out of the subscript bounds.

You do not have to remember the subscript when looping

through arrays; you can use the constant instead.

Initializing Elements in the
Program

Rarely do you know the contents of arrays when you declare

them. Usually, you fill an array with user input or a disk file’s data.

The for loop is a perfect tool for looping through arrays when you fill

them with values.

CAUTION: An array name cannot appear on the left side of

 an assignment statement.

You cannot assign one array to another. Suppose you want to

copy an array called total_sales to a second array called saved_sales.

You cannot do so with the following assignment statement:

saved_sales = total_sales; // Invalid!

487

EXAMPLE
C++ By

Rather, you have to copy the arrays one element at a time, using

a loop, such as the following section of code does:

You want to copy one array to another. You have to do so one element at a
time, so you need a counter. Initialize a variable called ctr to 0; the value of
ctr represents a position in the array.

1. Assign the element that occupies the position in the first array
represented by the value of ctr to the same position in the second
array.

2. If the counter is less than the size of the array, add one to the
counter. Repeat step one.

for (ctr=0; ctr<ARRAY_SIZE; ctr++)

 { saved_sales[ctr] = total_sales[ctr]; }

The following examples illustrate methods for initializing ar-

rays in a program. After learning about disk processing later in the

book, you learn to read array values from a disk file.

Examples

1. The following program uses the assignment operator to

assign 10 temperatures to an array.

// Filename: C23ARA4.CPP

// Fills an array with 10 temperature values.

#include <iostream.h>

#include <iomanip.h>

const int NUM_TEMPS = 10;

void main()

{

 float temps[NUM_TEMPS];

 int ctr;

 temps[0] = 78.6; // Subscripts always begin at 0.

 temps[1] = 82.1;

 temps[2] = 79.5;

 temps[3] = 75.0;

 temps[4] = 75.4;

Chapter 23 ♦ Introducing Arrays

488

 temps[5] = 71.8;

 temps[6] = 73.3;

 temps[7] = 69.5;

 temps[8] = 74.1;

 temps[9] = 75.7;

 // Print the temps.

 cout << “Daily temperatures for the last “ <<

 NUM_TEMPS << “ days:\n”;

 for (ctr=0; ctr<NUM_TEMPS; ctr++)

 { cout << setprecision(1) << temps[ctr] << “\n”; }

 return;

}

2. The following program uses a for loop and cin to assign

eight integers entered individually by the user. The program

then prints a total of the numbers.

// Filename: C23TOT.CPP

// Totals eight input values from the user.

#include <iostream.h>

const int NUM = 8;

void main()

{

 int nums[NUM];

 int total = 0; // Holds total of user’s eight numbers.

 int ctr;

 for (ctr=0; ctr<NUM; ctr++)

 { cout << “Please enter the next number...”;

 cin >> nums[ctr];

 total += nums[ctr]; }

 cout << “The total of the numbers is “ << total << “\n”;

 return;

}

3. You don’t have to access an array in the same order as you

initialized it. Chapter 24, “Array Processing,” shows you

how to change the order of an array. You also can use the

subscript to select items from an array of values.

489

EXAMPLE
C++ By

The following program requests sales data for the preceding

12 months. Users can then type a month they want to see.

That month’s sales figure is then printed, without figures

from other months getting in the way. This is how you begin

to build a search program to find requested data: You store

the data in an array (or in a disk file that can be read into an

array, as you learn later), then wait for a user’s request to see

specific pieces of the data.

// Filename: C23SAL.CPP

// Stores twelve months of sales and

// prints selected ones.

#include <iostream.h>

#include <ctype.h>

#include <conio.h>

#include <iomanip.h>

const int NUM = 12;

void main()

{

 float sales[NUM];

 int ctr, ans;

 int req_month; // Holds user’s request.

 // Fill the array.

 cout << “Please enter the twelve monthly sales values\n”;

 for (ctr=0; ctr<NUM; ctr++)

 { cout << “What are sales for month number “

 << ctr+1 << “? \n”;

 cin >> sales[ctr]; }

 // Wait for a requested month.

 for (ctr=0; ctr<25; ctr++)

 { cout << “\n”; } // Clears the screen.

 cout << “*** Sales Printing Program ***\n”;

 cout << “Prints any sales from the last “ << NUM

 << “ months\n\n”;

 do

 { cout << “For what month (1-” << NUM << “) do you want “

 << “to see a sales value? “;

 cin >> req_month;

Chapter 23 ♦ Introducing Arrays

490

 // Adjust for zero-based subscript.

 cout << “\nMonth “ << req_month <<

 “‘s sales are “ << setprecision(2) <<

 sales[req_month-1];

 cout << “\nDo you want to see another (Y/N)? “;

 ans=getch();

 ans=toupper(ans);

 } while (ans == ‘Y’);

 return;

}

Notice the helpful screen-clearing routine that prints 23

newline characters. This routine scrolls the screen until it is

blank. (Most compilers come with a better built-in screen-

clearing function, but the AT&T C++ standard does not offer

one because the compiler is too closely linked with specific

hardware.)

The following is the second screen from this program. After

the 12 sales values are entered in the array, any or all can be

requested, one at a time, simply by supplying the month’s

number (the number of the subscript).

*** Sales Printing Program ***

Prints any sales from the last 12 months

For what month (1-12) do you want to see a sales value? 2

Month 2’s sales are 433.22

Do you want to see another (Y/N)?

For what month (1-12) do you want to see a sales value? 5

Month 5’s sales are 123.45

Do you want to see another (Y/N)?

491

EXAMPLE
C++ By

Review Questions
Answers to the review questions are in Appendix B.

1. True or false: A single array can hold several values of

different data types.

2. How do C++ programs tell one array element from another

if all elements have identical names?

3. Why must you initialize an array before using it?

4. Given the following definition of an array, called weights,

what is the value of weights[5]?

int weights[10] = {5, 2, 4};

5. If you pass an integer array to a function and change it, does

the array change also in the calling function? (Hint: Remem-

ber how character arrays are passed to functions.)

6. How does C++ initialize global array elements?

Review Exercises
1. Write a program to store the ages of six of your friends in a

single array. Store each of the six ages using the assignment

operator. Print the ages on-screen.

2. Modify the program in Exercise 1 to print the ages in reverse

order.

3. Write a simple data program to track a radio station’s ratings

(1, 2, 3, 4, or 5) for the previous 18 months. Use cin to initial-

ize the array with the ratings. Print the ratings on-screen

with an appropriate title.

4. Write a program to store the numbers from 1 to 100 in an

array of 100 integer elements. (Hint: The subscripts should

begin at 0 and end at 99.)

Chapter 23 ♦ Introducing Arrays

492

5. Write a program a small business owner can use to track

customers. Assign each customer a number (starting at 0).

Whenever a customer purchases something, record the sale

in the element that matches the customer’s number (that is,

the next unused array element). When the store owner

signals the end of the day, print a report consisting of each

customer number with its matching sales, a total sales figure,

and an average sales figure per customer.

Summary
You now know how to declare and initialize arrays consisting

of various data types. You can initialize an array either when you

declare it or in the body of your program. Array elements are much

easier to process than other variables because each has a different

name.

C++ has powerful sorting and searching techniques that make

your programs even more serviceable. The next chapter introduces

these techniques and shows you still other ways to access array

elements.

