
273

EXAMPLE
C++ By

13

The for Loop

The for loop enables you to repeat sections of your program for a

specific number of times. Unlike the while and do-while loops, the for

loop is a determinate loop. This means when you write your program

you can usually determine how many times the loop iterates. The

while and do-while loops repeat only until a condition is met. The for

loop does this and more: It continues looping until a count (or

countdown) is reached.

After the final for loop count is reached, execution continues

with the next statement, in sequence. This chapter focuses on the for

loop construct by introducing

♦ The for statement

♦ The concept of for loops

♦ Nested for loops

The for loop is a helpful way of looping through a section of

code when you want to count, or sum , specified amounts, but it does

not replace the while and do-while loops.

Chapter 13 ♦ The for Loop

274

The for Statement
The for statement encloses one or more C++ statements that

form the body of the loop. These statements in the loop continuously

repeat for a specified number of times. You, as the programmer,

control the number of loop repetitions.

The format of the for loop is

for (start expression; test expression; count expression)

{ Block of one or more C++ statements; }

C++ evaluates the start expression before the loop begins.

Typically, the start expression is an assignment statement (such as

ctr=1;), but it can be any legal expression you specify. C++ evaluates

start expression only once, at the top of the loop.

CAUTION: Do not put a semicolon after the right parenthesis.

If you do, the for loop interprets the body of the loop as zero

statements long! It would continue looping—doing nothing
each time—until the test expression becomes False.

Every time the body of the loop repeats, the count expression

executes, usually incrementing or decrementing a variable. The test

expression evaluates to True (nonzero) or False (zero), then deter-

mines whether the body of the loop repeats again.

TIP: If only one C++ statement resides in the for loop’s body,

braces are not required, but they are recommended. If you add

more statements, the braces are there already, reminding you

that they are now needed.

The Concept of for Loops
You use the concept of for loops throughout your day-to-day

life. Any time you have to repeat a certain procedure a specified

number of times, that repetition becomes a good candidate for a

computerized for loop.

The for loop
iterates for a
specified number
of times.

275

EXAMPLE
C++ By

To illustrate the concept of a for loop further, suppose you are

installing 10 new shutters on your house. You must do the following

steps for each shutter:

1. Move the ladder to the location of the shutter.

2. Take a shutter, hammer, and nails up the ladder.

3. Hammer the shutter to the side of the house.

4. Climb down the ladder.

You must perform each of these four steps exactly 10 times,

because you have 10 shutters. After 10 times, you don’t install

another shutter because the job is finished. You are looping through

a procedure that has several steps (the block of the loop). These steps

are the body of the loop. It is not an endless loop because there are

a fixed number of shutters; you run out of shutters only after you

install all 10.

For a less physical example that might be more easily comput-

erized, suppose you have to fill out three tax returns for each of your

teenage children. (If you have three teenage children, you probably

need more than a computer to help you get through the day!) For

each child, you must perform the following steps:

1. Add the total income.

2. Add the total deductions.

3. Fill out a tax return.

4. Put it in an envelope.

5. Mail it.

You then must repeat this entire procedure two more times.

Notice how the sentence before these steps began: For each child. This

signals an idea similar to the for loop construct.

NOTE: The for loop tests the test expression at the top of the

loop. If the test expression is False when the for loop begins, the

body of the loop never executes.

Chapter 13 ♦ The for Loop

276

The Choice of Loops

Any loop construct can be written with a for loop, a while loop,

or a do-while loop. Generally, you use the for loop when you

want to count or loop a specific number of times, and reserve

the while and do-while loops for looping until a False condition

is met.

Examples

1. To give you a glimpse of the for loop’s capabilities, this

example shows you two programs: one that uses a for loop

and one that does not. The first one is a counting program.

Before studying its contents, look at the output. The results

illustrate the for loop concept very well.

Identify the program and include the necessary header file. You
need a counter, so make ctr an integer variable.

1. Add one to the counter.

2. If the counter is less than or equal to 10, print its value and
repeat step one.

The program with a for loop follows:

// Filename: C13FOR1.CPP

// Introduces the for loop.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=1; ctr<=10; ctr++) // Start ctr at one.

 // Increment through loop.

 { cout << ctr << “\n”; } // Body of for loop.

 return 0;

}

277

EXAMPLE
C++ By

This program’s output is

1

2

3

4

5

6

7

8

9

10

Here is the same program using a do-while loop:

Identify the program and include the necessary header file. You need
a counter, so make ctr an integer variable.

1. Add one to the counter.
2. Print the value of the counter.
3. If the counter is less than or equal to 10, repeat step one.

// Filename: C13WHI1.CPP

// Simulating a for loop with a do-while loop.

#include <iostream.h>

main()

{

 int ctr=1;

 do

 { cout << ctr << “\n”; // Body of do-while loop.

 ctr++; }

 while (ctr <= 10);

 return 0;

}

Notice that the for loop is a cleaner way of controlling the

looping process. The for loop does several things that re-

quire extra statements in a while loop. With for loops, you do

not have to write extra code to initialize variables and incre-

ment or decrement them. You can see at a glance (in the

Chapter 13 ♦ The for Loop

278

expressions in the for statement) exactly how the loop

executes, unlike the do-while, which forces you to look at the

bottom of the loop to see how the loop stops.

2. Both of the following sample programs add the numbers

from 100 to 200. The first one uses a for loop; the second one

does not. The first example starts with a start expression

bigger than 1, thus starting the loop with a bigger count

expression as well.

This program has a for loop:

// Filename: C13FOR2.CPP

// Demonstrates totaling using a for loop.

#include <iostream.h>

main()

{

 int total, ctr;

 total = 0; // Holds a total of 100 to 200.

 for (ctr=100; ctr<=200; ctr++) // ctr is 100, 101,

 // 102,...200

 { total += ctr; } // Add value of ctr to each iteration.

 cout << “The total is “ << total << “\n”;

 return 0;

}

The same program without a for loop follows:

// Filename: C13WHI2.CPP

// A totaling program using a do-while loop.

#include <iostream.h>

main()

{

 int total=0; // Initialize total

 int num=100; // Starting value

 do

 { total += num; // Add to total

 num++; // Increment counter

279

EXAMPLE
C++ By

 } while (num <= 200);

 cout << “The total is “ << total << “\n”;;

 return 0;

}

Both programs produce this output:

The total is 15150

The body of the loop in both programs executes 101 times.

The starting value is 101, not 1 as in the previous example.

Notice that the for loop is less complex than the do-while

because the initialization, testing, and incrementing are

performed in the single for statement.

TIP: Notice how the body of the for loop is indented. This is a

good habit to develop because it makes it easier to see the

beginning and ending of the loop’s body.

3. The body of the for loop can have more than one statement.

The following example requests five pairs of data values:

children’s first names and their ages. It prints the teacher

assigned to each child, based on the child’s age. This illus-

trates a for loop with cout functions, a cin function, and an if

statement in its body. Because exactly five children are

checked, the for loop ensures the program ends after the

fifth child.

// Filename: C13FOR3.CPP

// Program that uses a loop to input and print

// the teacher assigned to each child.

#include <iostream.h>

main()

{

 char child[25]; // Holds child’s first name

 int age; // Holds child’s age

 int ctr; // The for loop counter variable

 for (ctr=1; ctr<=5; ctr++)

 { cout << “What is the next child’s name? “;

Chapter 13 ♦ The for Loop

280

 cin >> child;

 cout << “What is the child’s age? “;

 cin >> age;

 if (age <= 5)

 { cout << “\n” << child << “ has Mrs. “

 << “Jones for a teacher\n”; }

 if (age == 6)

 { cout << “\n” << child << “ has Miss “

 << “Smith for a teacher\n”; }

 if (age >= 7)

 { cout << “\n” << child << “ has Mr. “

 << “Anderson for a teacher\n”; }

 } // Quits after 5 times

 return 0;

}

Below is the output from this program. You can improve this

program even more after learning the switch statement in the

next chapter.

What is the next child’s name? Joe

What is the child’s age? 5

Joe has Mrs. Jones for a teacher

What is the next child’s name? Larry

What is the child’s age? 6

Larry has Miss Smith for a teacher

What is the next child’s name? Julie

What is the child’s age? 9

Julie has Mr. Anderson for a teacher

What is the next child’s name? Manny

What is the child’s age? 6

Manny has Miss Smith for a teacher

What is the next child’s name? Lori

What is the child’s age? 5

Lori has Mrs. Jones for a teacher

281

EXAMPLE
C++ By

4. The previous examples used an increment as the count

expression. You can make the for loop increment the loop

variable by any value. It does not have to increment by 1.

The following program prints the even numbers from 1 to

20. It then prints the odd numbers from 1 to 20. To do this,

two is added to the counter variable (rather than one, as

shown in the previous examples) each time the loop

executes.

// Filename: C13EVOD.CPP

// Prints the even numbers from 1 to 20,

// then the odd numbers from 1 to 20.

#include <iostream.h>

main()

{

 int num; // The for loop variable

 cout << “Even numbers below 21\n”; // Title

 for (num=2; num<=20; num+=2)

 { cout << num << “ “; } // Prints every other number.

 cout << “\nOdd numbers below 20\n”; // A second title

 for (num=1; num<=20; num+=2)

 { cout << num << “ “; } // Prints every other number.

 return 0;

}

There are two loops in this program. The body of each one

consists of a single printf() function. In the first half of the

program, the loop variable, num, is 2 and not 1. If it were 1,

the number 1 would print first, as it does in the odd number

section.

The two cout statements that print the titles are not part of

either loop. If they were, the program would print a title

before each number. The following shows the result of

running this program.

Chapter 13 ♦ The for Loop

282

Even numbers below 21

2 4 6 8 10 12 14 16 18 20

Odd numbers below 20

1 3 5 7 9 11 13 15 17 19

5. You can decrement the loop variable as well. If you do, the

value is subtracted from the loop variable each time through

the loop.

The following example is a rewrite of the counting program.

It produces the reverse effect by showing a countdown.

// Filename: C13CNTD1.CPP

// Countdown to the liftoff.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=10; ctr!=0; ctr--)

 { cout << ctr << “\n”; } // Print ctr as it

 // counts down.

 cout << “*** Blast off! ***\n”;

 return 0;

}

When decrementing a loop variable, the initial value should

be larger than the end value being tested. In this example,

the loop variable, ctr, counts down from 10 to 1. Each time

through the loop (each iteration), ctr is decremented by one.

You can see how easy it is to control a loop by looking at this

program’s output, as follows.

10

 9

 8

 7

 6

 5

 4

 3

283

EXAMPLE
C++ By

 2

 1

*** Blast Off! ***

TIP: This program’s for loop test illustrates a redundancy

that you can eliminate, thanks to C++. The test expression,
ctr!=0; tells the for loop to continue looping until ctr is not

equal to zero. However, if ctr becomes zero (a False value),

there is no reason to add the additional !=0 (except for clarity).

You can rewrite the for loop as

for (ctr=10; ctr; ctr--)

without loss of meaning. This is more efficient and such an

integral part of C++ that you should become comfortable with

it. There is little loss of clarity once you adjust to it.

6. You also can make a for loop test for something other than a

literal value. The following program combines much of what

you have learned so far. It asks for student grades and

computes an average. Because there might be a different

number of students each semester, the program first asks the

user for the number of students. Next, the program iterates

until the user enters an equal number of scores. It then com-

putes the average based on the total and the number of

student grades entered.

// Filename: C13FOR4.CPP

// Computes a grade average with a for loop.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float grade, avg;

 float total=0.0;

 int num; // Total number of grades.

 int loopvar; // Used to control the for loop

 cout << “\n*** Grade Calculation ***\n\n”; // Title

Chapter 13 ♦ The for Loop

284

 cout << “How many students are there? “;

 cin >> num; // Get total number to enter

 for (loopvar=1; loopvar<=num; loopvar++)

 { cout << “\nWhat is the next student’s grade? “;

 cin >> grade;

 total += grade; } // Keep a running total

 avg = total / num;

 cout << “\n\nThe average of this class is “ <<

 setprecision(1) << avg;

 return 0;

}

Due to the for loop, the total and the average calculations do

not have to be changed if the number of students changes.

7. Because characters and integers are so closely associated in

C++, you can increment character variables in a for loop.

The following program prints the letters A through Z with a

simple for loop.

// Filename: C13FOR5.CPP

// Prints the alphabet with a simple for loop.

#include <iostream.h>

main()

{

 char letter;

 cout << “Here is the alphabet:\n”;

 for (letter=’A’; letter<=’Z’; letter++) // Loops A to Z

 { cout << “ “ << letter; }

 return 0;

}

This program produces the following output:

Here is the alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

285

EXAMPLE
C++ By

8. A for expression can be a blank, or null expression. In the

following for loop, all the expressions are blank:

for (;;)

 { printf(“Over and over...”); }

This for loop iterates forever. Although you should avoid

infinite loops, your program might dictate that you make a

for loop expression blank. If you already initialized the start

expression earlier in the program, you are wasting computer

time to repeat it in the for loop—and C++ does not require it.

The following program omits the start expression and the

count expression, leaving only the for loop’s test expression.
Most the time, you have to omit only one of them. If you use

a for loop without two of its expressions, consider replacing

it with a while loop or a do-while loop.

// Filename: C13FOR6.CPP

// Uses only the test expression in

// the for loop to count by fives.

#include <iostream.h>

main()

{

 int num=5; // Starting value

 cout << “\nCounting by 5s: \n”; // Title

 for (; num<=100;) // Contains only the test expression.

 { cout << num << “\n”;

 num+=5; // Increment expression outside the loop.

 } // End of the loop’s body

 return 0;

}

The output from this program follows:

Counting by 5s:

5

10

15

Chapter 13 ♦ The for Loop

286

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Nested for Loops
Any C++ statement can go inside the body of a for loop—even

another for loop! When you put a loop in a loop, you are creating a

nested loop. The clock in a sporting event works like a nested loop.

You might think this is stretching the analogy a little far, but it truly

works. A football game counts down from 15 minutes to 0. It does

this four times. The first countdown loops from 15 to 0 (for each

minute). That countdown is nested in another that loops from 1 to 4

(for each of the four quarters).

If your program has to repeat a loop more than one time, it is a

good candidate for a nested loop. Figure 13.1 shows two outlines of

nested loops. You can think of the inside loop as looping “faster”

than the outside loop. In the first example, the inside for loop counts

from 1 to 10 before the outside loop (the variable out) can finish its

first iteration. When the outside loop finally does iterate a second

time, the inside loop starts over.

Use nested loops
when you want to
repeat a loop more
than once.

287

EXAMPLE
C++ By

Inside
Loop

First
Inner
Loop

Outside
Loop

Outside
Loop Second

Inner
Loop

Figure 13.1. Outlines of two nested loops.

The second nested loop outline shows two loops in an outside

loop. Both of these loops execute in their entirety before the outside

loop finishes its first iteration. When the outside loop starts its

second iteration, the two inside loops repeat again.

Notice the order of the braces in each example. The inside loop

always finishes, and therefore its ending brace must come before the

outside loop’s ending brace. Indention makes this much clearer

because you can align the braces of each loop.

Nested loops become important when you use them for array

and table processing in Chapter 23, “Introducing Arrays.”

NOTE: In nested loops, the inside loop (or loops) execute

completely before the outside loop’s next iteration.

Chapter 13 ♦ The for Loop

288

Examples

1. The following program contains a loop in a loop—a nested

loop. The inside loop counts and prints from 1 to 5. The

outside loop counts from 1 to 3. The inside loop repeats, in

its entirety, three times. In other words, this program prints

the values 1 to 5 and does so three times.

// Filename: C13NEST1.CPP

// Print the numbers 1-5 three times.

// using a nested loop.

#include <iostream.h>

main()

{

 int times, num; // Outer and inner for loop variables

 for (times=1; times<=3; times++)

 {

 for (num=1; num<=5; num++)

 { cout << num; } // Inner loop body

 cout << “\n”;

 } // End of outer loop

 return 0;

}

The indention follows the standard of for loops; every

statement in each loop is indented a few spaces. Because the

inside loop is already indented, its body is indented another

few spaces. The program’s output follows:

12345

12345

12345

2. The outside loop’s counter variable changes each time

through the loop. If one of the inside loop’s control variables

is the outside loop’s counter variable, you see effects such as

those shown in the following program.

289

EXAMPLE
C++ By

// Filename: C13NEST2.CPP

// An inside loop controlled by the outer loop’s

// counter variable.

#include <iostream.h>

main()

{

 int outer, inner;

 for (outer=5; outer>=1; outer--)

 { for (inner=1; inner<=outer; inner++)

 { cout << inner; } // End of inner loop.

 cout << “\n”;

 }

 return 0;

}

The output from this program follows. The inside loop

repeats five times (as outer counts down from 5 to 1) and

prints from five numbers to one number.

12345

1234

123

12

1

The following table traces the two variables through this

program. Sometimes you have to “play computer” when

learning a new concept such as nested loops. By executing a

line at a time and writing down each variable’s contents, you

create this table.

The outer variable The inner variable

5 1

5 2

5 3

5 4

5 5

4 1

4 2

continues

Chapter 13 ♦ The for Loop

290

The outer variable The inner variable

4 3

4 4

3 1

3 2

3 3

2 1

2 2

1 1

Tip for Mathematicians

The for statement is identical to the mathematical summation

symbol. When you write programs to simulate the summation

symbol, the for statement is an excellent candidate. A nested

for statement is good for double summations.

For example, the following summation

i = 30

Σ (i / 3 * 2)

i = 1

can be rewritten as

total = 0;

for (i=1; i<=30; i++)

 { total += (i / 3 * 2); }

4. A factorial is a mathematical number used in probability

theory and statistics. A factorial of a number is the multi-

plied product of every number from 1 to the number in

question.

291

EXAMPLE
C++ By

For example, the factorial of 4 is 24 because 4 ✕ 3 ✕ 2 ✕ 1 = 24.

The factorial of 6 is 720 because 6 ✕ 5 ✕ 4 ✕ 3 ✕ 2 ✕ 1 = 720. The

factorial of 1 is 1 by definition.

Nested loops are good candidates for writing a factorial

number-generating program. The following program asks

the user for a number, then prints the factorial of that

number.

// Filename: C13FACT.CPP

// Computes the factorial of numbers through

// the user’s number.

#include <iostream.h>

main()

{

 int outer, num, fact, total;

 cout << “What factorial do you want to see? “;

 cin >> num;

 for (outer=1; outer <= num; outer++)

 { total = 1; // Initialize total for each factorial.

 for (fact=1; fact<= outer; fact++)

 { total *= fact; } // Compute each factorial.

 }

 cout << “The factorial for “ << num << “ is “

 << total;

 return 0;

}

The following shows the factorial of seven. You can run this

program, entering different values when asked, and see

various factorials. Be careful: factorials multiply quickly.

(A factorial of 11 won’t fit in an integer variable.)

What factorial do you want to see? 7

The factorial for 7 is 5040

Chapter 13 ♦ The for Loop

292

Review Questions
The answers to the review questions are in Appendix B.

1. What is a loop?

2. True or false: The body of a for loop contains at most one

statement.

3. What is a nested loop?

4. Why might you want to leave one or more expressions out

of the for statement’s parentheses?

5. Which loop “moves” fastest: the inner loop or the outer

loop?

6. What is the output from the following program?

for (ctr=10; ctr>=1; ctr-=3)

 { cout << ctr << “\n”; }

7. True or false: A for loop is better to use than a while loop

when you know in advance exactly how many iterations a

loop requires.

8. What happens when the test expression becomes False in a

for statement?

9. True or false: The following program contains a valid nested

loop.

for (i=1; i<=10; i++);

 { for (j=1; j<=5; j++)

 { cout << i << j; }

 }

10. What is the output of the following section of code?

i=1;

start=1;

end=5;

step=1;

293

EXAMPLE
C++ By

for (; start>=end;)

 { cout << i << “\n”;

 start+=step;

 end--;}

Review Exercises
1. Write a program that prints the numerals 1 to 15 on-screen.

Use a for loop to control the printing.

2. Write a program to print the numerals 15 to 1 on-screen. Use

a for loop to control the printing.

3. Write a program that uses a for loop to print every odd

number from 1 to 100.

4. Write a program that asks the user for her or his age. Use a

for loop to print “Happy Birthday!” for every year of the

user’s age.

5. Write a program that uses a for loop to print the ASCII

characters from 32 to 255 on-screen. (Hint: Use the %c conver-

sion character to print integer variables.)

6. Using the ASCII table numbers, write a program to print the

following output, using a nested for loop. (Hint: The outside

loop should loop from 1 to 5, and the inside loop’s start

variable should be 65, the value of ASCII A.)

A

AB

ABC

ABCD

ABCDE

Summary
This chapter taught you how to control loops. Instead of

writing extra code around a while loop, you can use the for loop to

control the number of iterations at the time you define the loop. All

Chapter 13 ♦ The for Loop

294

for loops contain three parts: a start expression, a test expression,
and a count expression.

You have now seen C++’s three loop constructs: the while loop,

the do-while loop, and the for loop. They are similar, but behave

differently in how they test and initialize variables. No loop is better

than the others. The programming problem should dictate which

loop to use. The next chapter (Chapter 14, “Other Loop Options”)

shows you more methods for controlling your loops.

