
295

EXAMPLE
C++ By

14

Other Loop
Options

Now that you have mastered the looping constructs, you should

learn some loop-related statements. This chapter teaches the con-

cepts of timing loops, which enable you to slow down your programs.

Slowing program execution can be helpful if you want to display a

message for a fixed period of time or write computer games with

slower speeds so they are at a practical speed for recreational use.

You can use two additional looping commands, the break and

continue statements, to control the loops. These statements work

with while loops and for loops.

This chapter introduces you to the following:

♦ Timing loops

♦ The break statement with for loops

♦ The continue statement with for loops

When you master these concepts, you will be well on your way

toward writing powerful programs that process large amounts of

data.

Chapter 14 ♦ Other Loop Options

296

Timing Loops
Computers are fast, and at times you would probably like them

to be even faster. Sometimes, however, you want to slow down the

computer. Often, you have to slow the execution of games because

the computer’s speed makes the game unplayable. Messages that

appear on-screen many times clear too fast for the user to read if you

don’t delay them.

A nested loop is a perfect place for a timing loop, which simply

cycles through a for or while loop many times. The larger the end

value of the for loop, the longer the time in which the loop repeats.

A nested loop is appropriate for displaying error messages to

your user. If the user requested a report—but had not entered

enough data for your program to print the report—you might print

a warning message on-screen for a few seconds, telling users that

they cannot request the report yet. After displaying the message for

a few seconds, you can clear the message and give the user another

chance. (The example program in Appendix F, “The Mailing List

Application,” uses timing loops to display error messages.)

There is no way to determine how many iterations a timing

loop takes for one second (or minute or hour) of delay because

computers run at different speeds. You therefore have to adjust your

timing loop’s end value to set the delay to your liking.

Examples

1. Timing loops are easy to write—simply put an empty for

loop inside the program. The following program is a rewrit-

ten version of the countdown program (C13CNTD1.CPP)

you saw in Chapter 13. Each number in the countdown is

delayed so the countdown does not seem to take place

instantly. (Adjust the delay value if this program runs too

slowly or too quickly on your computer.)

Identify the program and include the input/output header file. You
need a counter and a delay, so make cd and delay integer variables.
Start the counter at 10, and start the delay at 1.

1. If the delay is less than or equal to 30,000, add 1 to its value
and repeat step one.

Timing loops make
the computer wait.

297

EXAMPLE
C++ By

2. Print the value of the counter.

3. If the counter is greater than or equal to 0, subtract 1 from its
value and repeat step one.

Print a blast-off message.

// Filename: C14CNTD1.CPP

// Countdown to the liftoff with a delay.

#include <iostream.h>

main()

{

 int cd, delay;

 for (cd=10; cd>=0; cd--)

 { { for (delay=1; delay <=30000; delay++); } // Delay

 // program.

 cout << cd << “\n”; // Print countdown value.

 } // End of outer loop

 cout << “Blast off!!! \n”;

 return 0;

}

2. The following program asks users for their ages. If a user

enters an age less than 0, the program beeps (by printing an

alarm character, \a), then displays an error message for a few

seconds by using a nested timing loop. Because an integer

does not hold a large enough value (on many computers) for

a long timing loop, you must use a nested timing loop.

(Depending on the speed of your computer, adjust the

numbers in the loop to display the message longer or

shorter.)

The program uses a rarely seen printf() conversion charac-

ter, \r, inside the loop. As you might recall from Chapter 7,

“Simple Input and Output,” \r is a carriage-return character.

This conversion character moves the cursor to the beginning

of the current line, enabling the program to print blanks on

that same line. This process overwrites the error message

and it appears as though the error disappears from the

screen after a brief pause.

Chapter 14 ♦ Other Loop Options

298

// Filename: C14TIM.CPP

// Displays an error message for a few seconds.

#include <stdio.h>

main()

{

 int outer, inner, age;

 printf(“What is your age? “);

 scanf(“ %d”, &age);

 while (age <= 0)

 { printf(“*** Your age cannot be that small! ***”);

 // Timing loop here

 for (outer=1; outer<=30000; outer++)

 { for (inner=1; inner<=500; inner++); }

 // Erase the message

 printf(“\r\n\n”);

 printf(“What is your age? “);

 scanf(“ %d”, &age); // Ask again

 }

 printf(“\n\nThanks, I did not think you would actually tell”);

 printf(“me your age!”);

 return 0;

}

NOTE: Notice the inside loop has a semicolon (;) after the for

statement—with no loop body. There is no need for a loop body

here because the computer is only cycling through the loop to

waste some time.

The break and for Statements
The for loop was designed to execute for a specified number of

times. On rare occasions, you might want the for loop to quit before

299

EXAMPLE
C++ By

the counting variable has reached its final value. As with while loops,

you use the break statement to quit a for loop early.

The break statement is nested in the body of the for loop.

Programmers rarely put break on a line by itself, and it almost always

comes after an if test. If the break were on a line by itself, the loop

would always quit early, defeating the purpose of the for loop.

Examples

1. The following program shows what can happen when C++

encounters an unconditional break statement (one not pre-

ceeded by an if statement).

Identify the program and include the input/output header files.
You need a variable to hold the current number, so make num

an integer variable. Print a “Here are the numbers” message.

1. Make num equal to 1. If num is less than or equal to
20, add one to it each time through the loop.

2. Print the value of num.

3. Break out of the loop.

Print a goodbye message.

// Filename: C14BRAK1.CPP

// A for loop defeated by the break statement.

#include <iostream.h>

main()

{

 int num;

 cout << “Here are the numbers from 1 to 20\n”;

 for(num=1; num<=20; num++)

 { cout << num << “\n”;

 break; } // This line exits the for loop immediately.

 cout << “That’s all, folks!”;

 return 0;

}

Chapter 14 ♦ Other Loop Options

300

The following shows you the result of running this program.

Notice the break immediately terminates the for loop. The for

loop might as well not be in this program.

Here are the numbers from 1 to 20

1

That’s all, folks!

2. The following program is an improved version of the pre-

ceding example. It asks users if they want to see another

number. If they do, the for loop continues its next iteration.

If they don’t, the break statement terminates the for loop.

// Filename: C14BRAK2.CPP

// A for loop running at the user’s request.

#include <iostream.h>

main()

{

 int num; // Loop counter variable

 char ans;

 cout << “Here are the numbers from 1 to 20\n”;

 for (num=1; num<=20; num++)

 { cout << num << “\n”;

 cout << “Do you want to see another (Y/N)? “;

 cin >> ans;

 if ((ans == ‘N’) || (ans == ‘n’))

 { break; } // Will exit the for loop

 // if user wants to.

 }

 cout << “\nThat’s all, folks!\n”;

 return 0;

}

The following display shows a sample run of this program.

The for loop prints 20 numbers, as long as the user does not

answer N to the prompt. Otherwise, the break terminates the

for loop early. The statement after the body of the loop

always executes next if the break occurs.

301

EXAMPLE
C++ By

Here are the numbers from 1 to 20

1

Do you want to see another (Y/N)? Y

2

Do you want to see another (Y/N)? Y

3

Do you want to see another (Y/N)? Y

4

Do you want to see another (Y/N)? Y

5

Do you want to see another (Y/N)? Y

6

Do you want to see another (Y/N)? Y

7

Do you want to see another (Y/N)? Y

8

Do you want to see another (Y/N)? Y

9

Do you want to see another (Y/N)? Y

10

Do you want to see another (Y/N)? N

That’s all, folks!

If you nest one loop inside another, the break terminates the

“most active” loop (the innermost loop in which the break

statement resides).

3. Use the conditional break (an if statement followed by a break)

when you are missing data. For example, when you process

data files or large amounts of user data-entry, you might

expect 100 input numbers and receive only 95. You can use a

break to terminate the for loop before it iterates the 96th time.

Suppose the teacher that used the grade-averaging program

in the preceding chapter (C13FOR4.CPP) entered an incor-

rect total number of students. Maybe she typed 16, but there

are only 14 students. The previous for loop looped 16 times,

no matter how many students there are, because it relies on

the teacher’s count.

Chapter 14 ♦ Other Loop Options

302

The following grade averaging program is more sophisti-

cated than the last one. It asks the teacher for the total num-

ber of students, but if the teacher wants, she can enter –99 as

a student’s score. The –99 is not averaged; it is used as a

trigger value to break out of the for loop before its normal

conclusion.

// Filename: C14BRAK3.CPP

// Computes a grade average with a for loop,

// allowing an early exit with a break statement.

#include <iostream.h>

#include <iomanip.h>

main()

{

 float grade, avg;

 float total=0.0;

 int num, count=0; // Total number of grades and counter

 int loopvar; // Used to control for loop

 cout << “\n*** Grade Calculation ***\n\n”; // Title

 cout << “How many students are there? “;

 cin >> num; // Get total number to enter.

 for (loopvar=1; loopvar<=num; loopvar++)

 { cout << “\nWhat is the next student’s “ <<

 “grade? (-99 to quit) “;

 cin >> grade;

 if (grade < 0.0) // A negative number

 // triggers break.

 { break; } // Leave the loop early.

 count++;

 total += grade; } // Keep a running total.

 avg = total / count;

 cout << “\n\nThe average of this class is “<<

 setprecision(1) << avg;

 return 0;

}

Notice that grade is tested for less than 0, not –99.0. You

cannot reliably use floating-point values to compare for

303

EXAMPLE
C++ By

equality (due to their bit-level representations). Because no

grade is negative, any negative number triggers the break

statement. The following shows how this program works.

*** Grade Calculation ***

How many students are there? 10

What is the next student’s grade? (-99 to quit) 87

What is the next student’s grade? (-99 to quit) 97

What is the next student’s grade? (-99 to quit) 67

What is the next student’s grade? (-99 to quit) 89

What is the next student’s grade? (-99 to quit) 94

What is the next student’s grade? (-99 to quit) -99

The average of this class is: 86.8

The continue Statement
The break statement exits a loop early, but the continue state-

ment forces the computer to perform another iteration of the loop.

If you put a continue statement in the body of a for or a while loop, the

computer ignores any statement in the loop that follows continue.

The format of continue is

continue;

You use the continue statement when data in the body of the

loop is bad, out of bounds, or unexpected. Instead of acting on the

bad data, you might want to go back to the top of the loop and try

another data value. The following examples help illustrate the use of

the continue statement.

The continue
statement causes
C++ to skip all
remaining state-
ments in a loop.

Chapter 14 ♦ Other Loop Options

304

TIP: The continue statement forces a new iteration of any of the

three loop constructs: the for loop, the while loop, and the

do-while loop.

Figure 14.1 shows the difference between the break and continue

statements.

Figure 14.1. The difference between break and continue.

Examples

1. Although the following program seems to print the numbers

1 through 10, each followed by “C++ Programming,” it does

not. The continue in the body of the for loop causes an early

finish to the loop. The first cout in the for loop executes, but

the second does not—due to the continue.

break terminates
loop immediately

continue causes loop to perform
another iteration

305

EXAMPLE
C++ By

// Filename: C14CON1.CPP

// Demonstrates the use of the continue statement.

#include <iostream.h>

main()

{

 int ctr;

 for (ctr=1; ctr<=10; ctr++) // Loop 10 times.

 { cout << ctr << “ “;

 continue; // Causes body to end early.

 cout << “C++ Programming\n”;

 }

 return 0;

}

This program produces the following output:

1 2 3 4 5 6 7 8 9 10

On some compilers, you receive a warning message when

you compile this type of program. The compiler recognizes

that the second cout is unreachable code—it never executes

due to the continue statement.

Because of this fact, most programs do not use a continue,

except after an if statement. This makes it a conditional

continue statement, which is more useful. The following two

examples demonstrate the conditional use of continue.

2. This program asks users for five lowercase letters, one at a

time, and prints their uppercase equivalents. It uses the

ASCII table (see Appendix C, “ASCII Table”) to ensure that

users type lowercase letters. (These are the letters whose

ASCII numbers range from 97 to 122.) If users do not type a

lowercase letter, the program ignores the mistake with the

continue statement.

// Filename: C14CON2.CPP

// Prints uppercase equivalents of five lowercase letters.

#include <iostream.h>

main()

Chapter 14 ♦ Other Loop Options

306

{

 char letter;

 int ctr;

 for (ctr=1; ctr<=5; ctr++)

 { cout << “Please enter a lowercase letter “;

 cin >> letter;

 if ((letter < 97) || (letter > 122)) // See if

 // out-of-range.

 { continue; } // Go get another

 letter -= 32; // Subtract 32 from ASCII value.

 // to get uppercase.

 cout << “The uppercase equivalent is “ <<

 letter << “\n”;

 }

 return 0;

}

Due to the continue statement, only lowercase letters are

converted to uppercase.

3. Suppose you want to average the salaries of employees in

your company who make over $10,000 a year, but you have

only their monthly gross pay figures. The following program

might be useful. It prompts for each monthly employee

salary, annualizes it (multiplying by 12), and computes an

average. The continue statement ensures that salaries less

than or equal to $10,000 are ignored in the average calcu-

lation. It enables the other salaries to “fall through.”

If you enter -1 as a monthly salary, the program quits and

prints the result of the average.

// Filename: C14CON3.CPP

// Average salaries over $10,000

#include <iostream.h>

#include <iomanip.h>

main()

{

 float month, year; // Monthly and yearly salaries

 float avg=0.0, total=0.0;

 int count=0;

307

EXAMPLE
C++ By

 do

 { cout << “What is the next monthly salary (-1) “ <<

 “to quit)? “;

 cin >> month;

 if ((year=month*12.00) <= 10000.00) // Do not add

 { continue; } // low salaries.

 if (month < 0.0)

 { break; } // Quit if user entered -1.

 count++; // Add 1 to valid counter.

 total += year; // Add yearly salary to total.

 } while (month > 0.0);

 avg = total / (float)count; // Compute average.

 cout << “\n\nThe average of high salaries “ <<

 “is $” << setprecision(2) << avg;

 return 0;

}

Notice this program uses both a continue and a break state-

ment. The program does one of three things, depending on

each user’s input. It adds to the total, continues another

iteration if the salary is too low, or exits the while loop (and

the average calculation) if the user types a -1.

The following display is the output from this program:

What is the next monthly salary (-1 to quit)? 500.00

What is the next monthly salary (-1 to quit)? 2000.00

What is the next monthly salary (-1 to quit)? 750.00

What is the next monthly salary (-1 to quit)? 4000.00

What is the next monthly salary (-1 to quit)? 5000.00

What is the next monthly salary (-1 to quit)? 1200.00

What is the next monthly salary (-1 to quit)? -1

The average of high salaries is $36600.00

Chapter 14 ♦ Other Loop Options

308

Review Questions
The answers to the review questions are in Appendix B.

1. For what do you use timing loops?

2. Why do timing loop ranges have to be adjusted for different

types of computers?

3. Why do continue and break statements rarely appear without

an if statement controlling them?

4. What is the output from the following section of code?

for (i=1; i<=10; i++)

 { continue;

 cout << “***** \n”;

 }

5. What is the output from the following section of code?

for (i=1; i<=10; i++)

 { cout << “***** \n”;

 break;

 }

6. To perform a long timing loop, why do you generally have

to use a nested loop?

Review Exercises
1. Write a program that prints C++ is fun on-screen for ten

seconds. (Hint: You might have to adjust the timing loop.)

2. Make the program in Exercise 1 flash the message C++ is fun

for ten seconds. (Hint: You might have to use several timing

loops.)

3. Write a grade averaging program for a class of 20 students.

Ignore any grade less than 0 and continue until all 20 student

grades are entered, or until the user types –99 to end the

program early.

309

EXAMPLE
C++ By

4. Write a program that prints the numerals from 1 to 14 in one

column. To the right of the even numbers, print each

number’s square. To the right of the odd numbers, print each

number’s cube (the number raised to its third power).

Summary
In this chapter, you learned several additional ways to use and

modify your program’s loops. By adding timing loops, continue

statements, and break statements, you can better control how each

loop behaves. Being able to exit early (with the break statement) or

continue the next loop iteration early (with the continue statement)

gives you more freedom when processing different types of data.

The next chapter (Chapter 15, “The switch and goto State-

ments”) shows you a construct of C++ that does not loop, but relies

on the break statement to work properly. This is the switch statement,

and it makes your program choices much easier to write.

Chapter 14 ♦ Other Loop Options

310

