
311

EXAMPLE
C++ By

15

The switch and
goto Statements

This chapter focuses on the switch statement. It also improves the if

and else-if constructs by streamlining the multiple-choice deci-

sions your programs make. The switch statement does not replace

the if statement, but it is better to use switch when your programs

must perform one of many different actions.

The switch and break statements work together. Almost every

switch statement you use includes at least one break statement in the

body of the switch. To conclude this chapter—and this section of the

book on C++ constructs—you learn the goto statement, although it

is rarely used.

This chapter introduces the following:

♦ The switch statement used for selection

♦ The goto statement used for branching from one part of your

program to another

If you have mastered the if statement, you should have little

trouble with the concepts presented here. By learning the switch

statement, you should be able to write menus and multiple-choice

data-entry programs with ease.

Chapter 15 ♦ The switch and goto Statements

312

The switch Statement
The switch statement is sometimes called the multiple-choice

statement. The switch statement enables your program to choose

from several alternatives. The format of the switch statement is a little

longer than the format of other statements you have seen. Here is the

switch statement:

switch (expression)

 { case (expression1): { one or more C++ statements; }

 case (expression2): { one or more C++ statements; }

 case (expression3): { one or more C++ statements; }

 .

 .

 .

 default: { one or more C++ statements; }

 }

The expression can be an integer expression, a character, a

literal, or a variable. The subexpressions (expression1, expression2,
and so on) can be any other integer expression, character, literal, or

variable. The number of case expressions following the switch line is

determined by your application. The one or more C++ statements is any

block of C++ code. If the block is only one statement long, you do not

need the braces, but they are recommended.

The default line is optional; most (but not all) switch statements

include the default. The default line does not have to be the last line

of the switch body.

If expression matches expression1, the statements to the right of

expression1 execute. If expression matches expression2, the statements

to the right of expression2 execute. If none of the expressions match

the switch expression, the default case block executes. The case

expression does not need parentheses, but the parentheses some-

times make the value easier to find.

TIP: Use a break statement after each case block to keep execu-

tion from “falling through” to the remaining case statements.

Use the switch
statement when your
program makes a
multiple-choice
selection.

313

EXAMPLE
C++ By

Using the switch statement is easier than its format might lead

you to believe. Anywhere an if-else-if combination of statements

can go, you can usually put a clearer switch statement. The switch

statement is much easier to follow than an if-in-an-if-in-an-if

statement, as you have had to write previously.

However, the if and else-if combinations of statements are not

difficult to follow. When the relational test that determines the

choice is complex and contains many && and || operators, the if

statement might be a better candidate. The switch statement is

preferred whenever multiple-choice possibilities are based on a

single literal, variable, or expression.

TIP: Arrange case statements in the most-often to least-often

executed order to improve your program’s speed.

The following examples clarify the switch statement. They

compare the switch statement to if statements to help you see the

difference.

Examples

1. Suppose you are writing a program to teach your child how

to count. Your program will ask the child for a number. It

then beeps (rings the computer’s alarm bell) as many times

as necessary to match that number.

The following program assumes the child presses a number

key from 1 to 5. This program uses the if-else-if combina-

tion to accomplish this counting-and-beeping teaching

method.

Identify the program and include the necessary header file. You
want to sound a beep and move the cursor to the next line, so
define a global variable called BEEP that does this. You need a
variable to hold the user’s answer, so make num an integer variable.

Ask the user for a number. Assign the user’s number to num. If num
is 1, call BEEP once. If num is 2, call BEEP twice. If num is 3, call BEEP
three times. If num is 4, call BEEP four times. If num is 5, call BEEP five
times.

Chapter 15 ♦ The switch and goto Statements

314

// Filename: C15BEEP1.CPP

// Beeps a designated number of times.

#include <iostream.h>

// Define a beep cout to save repeating printf()s

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child

 // (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 // Use multiple if statements to beep.

 if (num == 1)

 { BEEP; }

 else if (num == 2)

 { BEEP; BEEP; }

 else if (num == 3)

 { BEEP; BEEP; BEEP; }

 else if (num == 4)

 { BEEP; BEEP; BEEP; BEEP; }

 else if (num == 5)

 { BEEP; BEEP; BEEP; BEEP; BEEP; }

 return 0;

}

No beeps are sounded if the child enters something other

than 1 through 5. This program takes advantage of the

#define preprocessor directive to define a shortcut to an

alarm cout function. In this case, the BEEP is a little clearer to

read, as long as you remember that BEEP is not a command,

but is replaced with the cout everywhere it appears.

One drawback to this type of if-in-an-if program is its

readability. By the time you indent the body of each if and

else, the program is too far to the right. There is no room for

more than five or six possibilities. More importantly, this

315

EXAMPLE
C++ By

type of logic is difficult to follow. Because it involves a

multiple-choice selection, a switch statement is much better

to use, as you can see with the following, improved version.

// Filename: C15BEEP2.CPP

// Beeps a certain number of times using a switch.

#include <iostream.h>

// Define a beep cout to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request from the child (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num)

 { case (1): { BEEP;

 break; }

 case (2): { BEEP; BEEP;

 break; }

 case (3): { BEEP; BEEP; BEEP;

 break; }

 case (4): { BEEP; BEEP; BEEP; BEEP;

 break; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP;

 break; }

 }

 return 0;

}

This example is much clearer than the previous one. The

value of num controls the execution—only the case that

matches num executes. The indention helps separate each

case.

If the child enters a number other than 1 through 5, no beeps

are sounded because there is no case expression to match

any other value and there is no default case.

Chapter 15 ♦ The switch and goto Statements

316

Because the BEEP preprocessor directive is so short, you can

put more than one on a single line. This is not a requirement,

however. The block of statements following a case can also

be more than one statement long.

If more than one case expression is the same, only the first

expression executes.

2. If the child does not enter a 1, 2, 3, 4, or 5, nothing happens

in the previous program. What follows is the same program

modified to take advantage of the default option. The default

block of statements executes if none of the previous cases

match.

// Filename: C15BEEP3.CPP

// Beeps a designated number of times using a switch.

#include <iostream.h>

// Define a beep cout to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num)

 { case (1): { BEEP;

 break; }

 case (2): { BEEP; BEEP;

 break; }

 case (3): { BEEP; BEEP; BEEP;

 break; }

 case (4): { BEEP; BEEP; BEEP; BEEP;

 break; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP;

 break; }

 default: { cout << “You must enter a number from “ <<

 “1 to 5\n”;

317

EXAMPLE
C++ By

 cout << “Please run this program again\n”;

 break; }

 }

 return 0;

}

The break at the end of the default case might seem redun-

dant. After all, no other case statements execute by “falling

through” from the default case. It is a good habit to put a

break after the default case anyway. If you move the default

higher in the switch (it doesn’t have to be the last switch

option), you are more inclined to move the break with it

(where it is then needed).

3. To show the importance of using break statements in each

case expression, here is the same beeping program without

any break statements.

// Filename: C15BEEP4.CPP

// Incorrectly beeps using a switch.

#include <iostream.h>

// Define a beep printf() to save repeating couts

// throughout the program.

#define BEEP cout << “\a \n”

main()

{

 int num;

 // Request a number from the child

 // (you might have to help).

 cout << “Please enter a number “;

 cin >> num;

 switch (num) // Warning!

 { case (1): { BEEP; } // Without a break, this code

 case (2): { BEEP; BEEP; } // falls through to the

 case (3): { BEEP; BEEP; BEEP; } // rest of the beeps!

 case (4): { BEEP; BEEP; BEEP; BEEP; }

 case (5): { BEEP; BEEP; BEEP; BEEP; BEEP; }

 default: { cout << “You must enter a number “ <<

 “from 1 to 5\n”;

Chapter 15 ♦ The switch and goto Statements

318

 cout << “Please run this program again\n”; }

 }

 return 0;

}

If the user enters a 1, the program beeps 15 times! The break

is not there to stop the execution from falling through to the

other cases. Unlike other programming languages such as

Pascal, C++’s switch statement requires that you insert break

statements between each case if you want only one case

executed. This is not necessarily a drawback. The trade-off of

having to specify break statements gives you more control in

how you handle specific cases, as shown in the next example.

4. This program controls the printing of end-of-day sales totals.

It first asks for the day of the week. If the day is Monday

through Thursday, a daily total is printed. If the day is a

Friday, a weekly total and a daily total are printed. If the day

happens to be the end of the month, a monthly sales total is

printed as well.

In a real application, these totals would come from the disk

drive rather than be assigned at the top of the program.

Also, rather than individual sales figures being printed, a

full daily, weekly, and monthly report of many sales totals

would probably be printed. You are on your way to learning

more about expanding the power of your C++ programs. For

now, concentrate on the switch statement and its possibilities.

Each type of report for sales figures is handled through a

hierarchy of case statements. Because the daily amount is the

last case, it is the only report printed if the day of the week is

Monday through Thursday. If the day of the week is Friday,

the second case prints the weekly sales total and then falls

through to the daily total (because Friday’s daily total must

be printed as well). If it is the end of the month, the first case

executes, falling through to the weekly total, then to the

daily sales total as well. Other languages that do not offer

this “fall through” flexibility are more limiting.

319

EXAMPLE
C++ By

// Filename: C15SALE.CPP

// Prints daily, weekly, and monthly sales totals.

#include <iostream.h>

#include <stdio.h>

main()

{

 float daily=2343.34; // Later, these figures

 float weekly=13432.65; // come from a disk file

 float monthly=43468.97; // instead of being assigned

 // as they are here.

 char ans;

 int day; // Day value to trigger correct case.

 // Month is assigned 1 through 5 (for Monday through

 // Friday) or 6 if it is the end of the month. Assume

 // a weekly and a daily prints if it is the end of the

 // month, no matter what the day is.

 cout << “Is this the end of the month? (Y/N) “;

 cin >> ans;

 if ((ans==’Y’) || (ans==’y’))

 { day=6; } // Month value

 else

 { cout << “What day number, 1 through 5 (for Mon-Fri)” <<

 “ is it? “;

 cin >> day; }

 switch (day)

 { case (6): printf(“The monthly total is %.2f \n”,

 monthly);

 case (5): printf(“The weekly total is %.2f \n”,

 weekly);

 default: printf(“The daily total is %.2f \n”, daily);

 }

 return 0;

}

5. The order of the case statements is not fixed. You can rear-

range the statements to make them more efficient. If only

one or two cases are being selected most of the time, put

those cases near the top of the switch statement.

Chapter 15 ♦ The switch and goto Statements

320

For example, in the previous program, most of the company’s

reports are daily, but the daily option is third in the case

statements. By rearranging the case statements so the daily

report is at the top, you can speed up this program because

C++ does not have to scan two case expressions that it rarely

executes.

// Filename: C15DEPT1.CPP

// Prints message depending on the department entered.

#include <iostream.h>

main()

{

 char choice;

 do // Display menu and ensure that user enters a

 // correct option.

 { cout << “\nChoose your department: \n”;

 cout << “S - Sales \n”;

 cout << “A - Accounting \n”;

 cout << “E - Engineering \n”;

 cout << “P - Payroll \n”;

 cout << “What is your choice? “;

 cin >> choice;

 // Convert choice to uppercase (if they

 // entered lowercase) with the ASCII table.

 if ((choice>=97) && (choice<=122))

 { choice -= 32; } // Subtract enough to make

 // uppercase.

 } while ((choice!=’S’)&&(choice!=’A’)&&

 (choice!=’E’)&&(choice!=’P’));

 // Put Engineering first because it occurs most often.

 switch (choice)

 { case (‘E’) : { cout << “\n Your meeting is at 2:30”;

 break; }

 case (‘S’) : { cout << “\n Your meeting is at 8:30”;

 break; }

 case (‘A’) : { cout << “\n Your meeting is at 10:00”;

 break; }

 case (‘P’) : { cout << “\n Your meeting has been “ <<

 “canceled”;

321

EXAMPLE
C++ By

 break; }

 }

 return 0;

}

The goto Statement
Early programming languages did not offer the flexible con-

structs that C++ gives you, such as for loops, while loops, and switch

statements. Their only means of looping and comparing was with

the goto statement. C++ still includes a goto, but the other constructs

are more powerful, flexible, and easier to follow in a program.

The goto statement causes your program to jump to a different

location, rather than execute the next statement in sequence. The

format of the goto statement is

goto statement label

A statement label is named just as variables are (see Chapter 4,

“Variables and Literals”). A statement label cannot have the same

name as a C++ command, a C++ function, or another variable in the

program. If you use a goto statement, there must be a statement label

elsewhere in the program to which the goto branches. Execution then

continues at the statement with the statement label.
The statement label precedes a line of code. Follow all statement

labels with a colon (:) so C++ recognizes them as labels, not

variables. You have not seen statement labels in the C++ programs

so far in this book because none of the programs needed them. A

statement label is optional unless you have a goto statement.

The following four lines of code each has a different statement

label. This is not a program, but individual lines that might be

included in a program. Notice that the statement labels are on the left.

pay: cout << “Place checks in the printer \n”;

Again: cin >> name;

EndIt: cout << “That is all the processing. \n”;

CALC: amount = (total / .5) * 1.15;

The goto causes
execution to jump to
some statement
other than the
next one.

Chapter 15 ♦ The switch and goto Statements

322

The statement labels are not intended to replace comments,

although their names reflect the code that follows. Statement labels

give goto statements a tag to go to. When your program finds the goto,

it branches to the statement labeled by the statement label. The

program then continues to execute sequentially until the next goto

changes the order again (or until the program ends).

TIP: Use identifying line labels. A repetitive calculation de-

serves a label such as CalcIt and not x15z. Even though both are

allowed, the first one is a better indication of the code’s pur-

pose.

Use goto Judiciously

The goto is not considered a good programming statement

when overused. There is a tendency, especially for beginning

programmers, to include too many goto statements in a pro-

gram. When a program branches all over the place, it becomes

difficult to follow. Some people call programs with many goto

statements “spaghetti code.”

To eliminate goto statements and write better structured pro-

grams, use the other looping and switch constructs seen in the

previous few chapters.

The goto is not necessarily a bad statement—if used judiciously.

Starting with the next chapter, you begin to break your pro-

grams into smaller modules called functions, and the goto

becomes less and less important as you write more and more

functions.

For now, become familiar with goto so you can understand

programs that use it. Some day, you might have to correct the

code of someone who used the goto.

323

EXAMPLE
C++ By

Examples

1. The following program has a problem that is a direct result

of the goto, but it is still one of the best illustrations of the

goto statement. The program consists of an endless loop (or an

infinite loop). The first three lines (after the opening brace)

execute, then the goto in the fourth line causes execution to

loop back to the beginning and repeat the first three lines.

The goto continues to do this until you press Ctrl-Break or

ask your system administrator to cancel the program.

Identify the program and include the input/output header file. You
want to print a message, but split it over three lines. You want the
message to keep repeating, so label the first line, then use a goto to
jump back to that line.

// Filename: C15GOTO1.CPP

// Program to show use of goto. This program ends

// only when the user presses Ctrl-Break.

#include <iostream.h>

main()

{

 Again: cout << “This message \n”;

 cout << “\t keeps repeating \n”;

 cout << “\t\t over and over \n”;

 goto Again; // Repeat continuously.

 return 0;

}

Notice the statement label (Again in the previous example)

has a colon to separate it from the rest of the line, but there is

not a colon with the label at the goto statement. Here is the

result of running this program.

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

Chapter 15 ♦ The switch and goto Statements

324

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

 keeps repeating

 over and over

This message

2. It is sometimes easier to read your program’s code when you

write the statement labels on separate lines. Remember that

writing maintainable programs is the goal of every good

programmer. Making your programs easier to read is a

prime consideration when you write them. The following

program is the same repeating program shown in the previ-

ous example, except the statement label is placed on a

separate line.

// Filename: C15GOTO2.CPP

// Program to show use of goto. This program ends

// only when the user presses Ctrl-Break.

#include <iostream.h>

main()

{

Again:

 cout << “This message \n”;

 cout << “\t keeps repeating \n”;

 cout << “\t\t over and over \n”;

 goto Again; // Repeat continuously

 return 0;

}

325

EXAMPLE
C++ By

The line following the statement label is the one that ex-

ecutes next, after control is passed (by the goto) to the label.

Of course, these are silly examples. You probably don’t want

to write programs with infinite loops. The goto is a statement

best preceded with an if; this way the goto eventually stops

branching without intervention from the user.

3. The following program is one of the worst-written programs

ever! It is the epitome of spaghetti code! However, do your

best to follow it and understand its output. By understand-

ing the flow of this output, you can hone your understand-

ing of the goto. You might also appreciate the fact that the

rest of this book uses the goto only when needed to make the

program clearer.

// Filename: C15GOTO3.CPP

// This program demonstrates the overuse of goto.

#include <iostream.h>

main()

{

 goto Here;

 First:

 cout << “A \n”;

 goto Final;

 There:

 cout << “B \n”;

 goto First;

 Here:

 cout << “C \n”;

 goto There;

 Final:

 return 0;

}

At first glance, this program appears to print the first three

letters of the alphabet, but the goto statements make them

print in the reverse order, C, B, A. Although the program is

Chapter 15 ♦ The switch and goto Statements

326

not a well-designed program, some indention of the lines

without statement labels make it a little more readable. This

enables you to quickly separate the statement labels from the

remaining code, as you can see from the following program.

// Filename: C15GOTO4.CPP

// This program demonstrates the overuse of goto.

#include <iostream.h>

main()

{

 goto Here;

First:

 cout << “A \n”;

 goto Final;

There:

 cout << “B \n”;

 goto First;

Here:

 cout << “C \n”;

 goto There;

Final:

 return 0;

}

This program’s listing is slightly easier to follow than the

previous one, even though both do the same thing. The

remaining programs in this book with statement labels also

use such indention.

You certainly realize that this output is better produced by

the following three lines.

cout << “C \n”;

cout << “B \n”;

cout << “A \n”;

The goto warning is worth repeating: Use goto sparingly and

only when its use makes your program more readable and

maintainable. Usually, you can use much better commands.

327

EXAMPLE
C++ By

Review Questions
The answers to the review questions are in Appendix B.

1. How does goto change the order in which a program nor-

mally executes?

2. What statement can substitute for an if-else-if construct?

3. Which statement almost always ends each case statement in

a switch?

4. True or false: The order of your case statements has no

bearing on the efficiency of your program.

5. Rewrite the following section of code using a switch

statement.

if (num == 1)

 { cout << “Alpha”; }

else if (num == 2)

 { cout << “Beta”; }

 else if (num == 3)

 { cout << “Gamma”; }

 else

 { cout << “Other”; }

6. Rewrite the following program using a do-while loop.

Ask:

 cout << “What is your first name? “;

 cin >> name;

 if ((name[0] < ‘A’) || (name[0] > ‘Z’))

 { goto Ask; } // Keep asking until the user

 // enters a valid letter.

Chapter 15 ♦ The switch and goto Statements

328

Review Exercises
1. Write a program using the switch statement that asks users

for their age, then prints a message saying “You can vote!” if

they are 18, “You can adopt!” if they are 21, or “Are you

really that young?” for any other age.

2. Write a menu-driven program for your local TV cable com-

pany. Here is how to assess charges: If you are within 20

miles outside the city limits, you pay $12.00 per month; 21 to

30 miles outside the city limits, you pay $23.00 per month; 31

to 50 miles outside the city limits, you pay $34.00. No one

outside 50 miles receives the service. Prompt the users with

a menu for their residence’s distance from the city limits.

3. Write a program that calculates parking fees for a multilevel

parking garage. Ask whether the driver is in a car or a truck.

Charge the driver $2.00 for the first hour, $3.00 for the

second, and $5.00 for more than 2 hours. If it is a truck, add

$1.00 to the total fee. (Hint: Use one switch and one if state-

ment.)

4. Modify the previous parking problem so the charge depends

on the time of day the vehicle is parked. If the vehicle is

parked before 8 a.m., charge the fees in Exercise 3. If the

vehicle is parked after 8 a.m. and before 5 p.m., charge an

extra usage fee of 50 cents. If the vehicle is parked after 5

p.m., deduct 50 cents from the computed price. You must

prompt users for the starting time in a menu, as follows.

1. Before 8 a.m.

2. Before 5 p.m.

3. After 5 p.m.

Summary
You now have seen the switch statement and its options. With

it, you can improve the readability of a complicated if-else-if

selection. The switch is especially good when several outcomes are

possible, based on the user’s choice.

329

EXAMPLE
C++ By

The goto statement causes an unconditional branch, and can be

difficult to follow at times. The goto statement is not used much now,

and you can almost always use a better construct. However, you

should be acquainted with as much C++ as possible in case you have

to work on programs others have written.

This ends the section on program control. The next section

introduces user-written functions. So far, you have been using

C++’s built-in functions, such as strcpy() and printf(). Now it’s time

to write your own.

Chapter 15 ♦ The switch and goto Statements

330

