
331

EXAMPLE
C++ By

16

Writing C++
Functions

Computers never become bored. They perform the same input,

output, and computations your program requires—for as long as

you want them to do it. You can take advantage of their repetitive

natures by looking at your programs in a new way: as a series of

small routines that execute whenever you need them, however

many times you require.

This chapter approaches its subject a little differently than the

previous chapters do. It concentrates on teaching you to write your

own functions, which are modules of code that you execute and

control from the main() function. So far, the programs in this book

have consisted of a single long function called main(). As you learn

here, the main() function’s primary purpose is to control the execu-

tion of other functions that follow it.

This chapter introduces the following:

♦ The need for functions

♦ How to trace functions

♦ How to write functions

♦ How to call and return from functions

Chapter 16 ♦ Writing C++ Functions

332

This chapter stresses the use of structured programming, some-

times called modular programming. C++ was designed in a way that

the programmer can write programs in several modules rather than

in one long block. By breaking the program into several smaller

routines (functions), you can isolate problems, write correct pro-

grams faster, and produce programs that are easier to maintain.

Function Basics
When you approach an application that has to be programmed,

it is best not to sit down at the keyboard and start typing. Rather, first

think about the program and what it is supposed to do. One of the

best ways to attack a program is to start with the overall goal, then

divide this goal into several smaller tasks. You should never lose

sight of the overall goal, but think also of how individual pieces can

fit together to accomplish such a goal.

When you finally do sit down to begin coding the problem,

continue to think in terms of those pieces fitting together. Don’t

approach a program as if it were one giant problem; rather, continue

to write those small pieces individually.

This does not mean you must write separate programs to do

everything. You can keep individual pieces of the overall program

together—if you know how to write functions. Then you can use the

same functions in many different programs.

C++ programs are not like BASIC or FORTRAN programs.

C++ was designed to force you to think in a modular, or subroutine-

like, functional style. Good C++ programmers write programs that

consist of many small functions, even if their programs execute one

or more of these functions only once. Those functions work together

to produce a program quicker and easier than if the program had to

be written from scratch.

TIP: Rather than code one long program, write several smaller

routines, called functions. One of those functions must be

called main(). The main() function is always the first to execute.

It doesn’t have to be first in a program, but it usually is.

C++ programs
should consist of
many small
functions.

333

EXAMPLE
C++ By

Breaking Down Problems
If your program does very much, break it into several func-

tions. Each function should do only one primary task. For example,

if you were writing a C++ program to retrieve a list of characters

from the keyboard, alphabetize them, then print them to the screen,

you could—but shouldn’t—write all these instructions in one big

main() function, as the following C++ skeleton (program outline)

shows:

main()

{

 // :

 // C++ code to retrieve a list of characters.

 // :

 // C++ code to alphabetize the characters.

 // :

 // C++ code to print the alphabetized list on-screen.

 // :

 return 0;

}

This skeleton is not a good way to write this program. Even

though you can type this program in only a few lines of code, it is

much better to begin breaking every program into distinct tasks so

this process becomes a habit to you. You should not use main() to do

everything—in fact, use main() to do very little except call each of the

functions that does the actual work.

A better way to organize this program is to write a separate

function for each task the program is supposed to do. This doesn’t

mean that each function has to be only one line long. Rather, it means

you make every function a building block that performs only one

distinct task in the program.

The following program outline shows you a better way to write

the program just described:

main()

{

 getletters(); // Calls a function to retrieve the numbers.

 alphabetize(); // Calls a function to alphabetize

 // letters.

Chapter 16 ♦ Writing C++ Functions

334

 printletters(); // Calls a function to print letters

 // on-screen.

 return 0; // Returns to the operating system.

}

getletters()

{

 // :

 // C++ code to get a list of characters.

 // :

 return 0; // Returns to main().

}

alphabetize()

{

 // :

 // C++ code to alphabetize the characters

 // :

 return 0; // Returns to main().

}

printletters()

{

 // :

 // C++ code to print the alphabetized list on-screen

 // :

 return 0; // Returns to main().

}

The program outline shows you a much better way of writing

this program. It takes longer to type, but it’s much more organized.

The only action the main() function takes is to control the other

functions by calling them in a certain order. Each separate function

executes its instructions, then returns to main(), whereupon main()

calls the next function until no more functions remain. The main()

function then returns control of the computer to the operating

system.

Do not be too concerned about the 0 that follows the return

statement. C++ functions return values. So far, the functions you’ve

seen have returned zero, and that return value has been ignored.

335

EXAMPLE
C++ By

Chapter 19, “Function Return Values and Prototypes,” describes

how you can use the return value for programming power.

TIP: A good rule of thumb is that a function should not be

 more than one screen in length. If it is longer, you are probably

doing too much in one function and should therefore break it

into two or more functions.

The first function called main() is what you previously used to

hold the entire program. From this point, in all but the smallest of

programs, main() simply controls other functions that do the work.

These listings are not examples of real C++ programs; instead,

they are skeletons, or outlines, of programs. From these outlines, it

is easier to develop the actual full program. Before going to the

keyboard to write a program such as this, know that there are four

distinct sections: a primary function-calling main() function, a key-

board data-entry function, an alphabetizing function, and a print-

ing function.

Never lose sight of the original programming problem. (Using

the approach just described, you never will!) Look again at the main()

calling routine in the preceding program. Notice that you can glance

at main() and get a feel for the overall program, without the remain-

ing statements getting in the way. This is a good example of

structured, modular programming. A large programming problem

is broken into distinct, separate modules called functions, and each

function performs one primary job in a few C++ statements.

More Function Basics
Little has been said about naming and writing functions, but

you probably understand much of the goals of the previous listing

already. C++ functions generally adhere to the following rules:

1. Every function must have a name.

2. Function names are made up and assigned by the program-

mer (you!) following the same rules that apply to naming

The main()
function is usually
a calling function
that controls the
remainder of the
program.

Chapter 16 ♦ Writing C++ Functions

336

variables: They can contain up to 32 characters, they must

begin with a letter, and they can consist of letters, numbers,

and the underscore (_) character.

3. All function names have one set of parentheses immediately

following them. This helps you (and C++) differentiate them

from variables. The parentheses may or may not contain

something. So far, all such parentheses in this book have

been empty (you learn more about functions in Chapter 18,

“Passing Values”).

4. The body of each function, starting immediately after the

closing parenthesis of the function name, must be enclosed

by braces. This means a block containing one or more state-

ments makes up the body of each function.

TIP: Use meaningful function names. Calc_balance() is more

descriptive than xy3().

Although the outline shown in the previous listing is a good

example of structured code, it can be improved by using the under-

score character (_) in the function names. Do you see how get_letters()

and print_letters() are much easier to read than are getletters() and

printletters()?

CAUTION: Be sure to use the underscore character (_) and not

the hyphen (-) when naming functions and variables. If you use

a hyphen, C++ produces misleading error messages.

The following listing shows you an example of a C++ function.

You can already tell quite a bit about this function. You know, for

instance, that it isn’t a complete program because it has no main()

function. (All programs must have a main() function.) You know also

that the function name is calc_it because parentheses follow this

name. These parentheses happen to have something in them (you

learn more about this in Chapter 18). You know also that the body

of the function is enclosed in a block of braces. Inside that block is a

All programs must
have a main()
function.

337

EXAMPLE
C++ By

smaller block, the body of a while loop. Finally, you recognize that the

return statement is the last line of the function.

calc_it(int n)

{

 // Function to print the square of a number.

 int square;

 while (square <= 250)

 { square = n * n;

 cout << “The square of “ << n <<

 “ is “ << square << “\n”;

 n++; } // A block in the function.

 return 0;

}

TIP: Not all functions require a return statement for their last

line, but it is recommended that you always include one

because it helps to show your intention to return to the calling

function at that point. Later in the book, you learn that the

return is required in certain instances. For now, develop the

habit of including a return statement.

Calling and Returning
Functions

You have been reading much about “function calling” and

“returning control.” Although you might already understand these

phrases from their context, you can probably learn them better

through an illustration of what is meant by a function call.

A function call in C++ is like a detour on a highway. Imagine

you are traveling along the “road” of the primary function called

main() and then run into a function-calling statement. You must

temporarily leave the main() function and execute the function that

was called. After that function finishes (its return statement is

A function call is like
a temporary program
detour.

Chapter 16 ♦ Writing C++ Functions

338

reached), program control reverts to main(). In other words, when

you finish a detour, you return to the “main” route and continue the

trip. Control continues as main() calls other functions.

NOTE: Generally, the primary function that controls function

calls and their order is called a calling function. Functions

controlled by the calling function are called the called functions.

A complete C++ program, with functions, will make this

concept clear. The following program prints several messages to the

screen. Each message printed is determined by the order of the

functions. Before worrying too much about what this program does,

take a little time to study its structure. Notice that there are three

functions defined in the program: main(), next_fun(), and third_fun().

A fourth function is used also, but it is the built-in C++ printf()

function. The three defined functions appear sequentially. The body

of each is enclosed in braces, and each has a return statement at its

end.

As you will see from the program, there is something new

following the #include directive. The first line of every function that

main() calls is listed here and also appears above the actual function.

C++ requires these prototypes. For now, just ignore them and study

the overall format of multiple-function programs. Chapter 19, “Func-

tion Return Values and Prototypes, ” explains prototypes.

// C16FUN1.CPP

// The following program illustrates function calls.

#include <stdio.h>

next_fun(); // Prototypes.

third_fun();

main() // main() is always the first C++ function executed.

{

 printf(“First function called main() \n”);

 next_fun(); // Second function is called here.

 third_fun(); // This function is called here.

 printf(“main() is completed \n”); // All control

 // returns here.

339

EXAMPLE
C++ By

 return 0; // Control is returned to

 //the operating system.

} // This brace concludes main().

next_fun() // Second function.

 // Parentheses always required.

{

 printf(“Inside next_fun() \n”); // No variables are

 // defined in the program.

 return 0; // Control is now returned to main().

}

third_fun() // Last function in the program.

{

 printf(“Inside third_fun() \n”);

 return 0; // Always return from all functions.

}

The output of this program follows:

First function called main()

Inside next_fun()

Inside third_fun()

main() is completed

Figure 16.1 shows a tracing of this program’s execution. Notice

that main() controls which of the other functions is called, as well as

the order of the calling. Control always returns to the calling function

after the called function finishes.

To call a function, simply type its name—including the paren-

theses—and follow it with a semicolon. Remember that semicolons

follow all executable statements in C++, and a function call (some-

times called a function invocation) is an executable statement. The

execution is the function’s code being called. Any function can call

any other function. In the previous program, main() is the only

function that calls other functions.

Now you can tell that the following statement is a function call:

print_total();

Chapter 16 ♦ Writing C++ Functions

340

Figure 16.1. Tracing function calls.

Because print_total is not a C++ command or built-in function

name, it must be a variable or a written function’s name. Only

function names end with the parentheses, so it must be a function

call or the start of a function’s code. Of the last two possibilities, it

must be a call to a function because it ends with a semicolon. If it

didn’t have a semicolon, it would have to be the start of a function

definition.

When you define a function (by typing the function name and

its subsequent code inside braces), you never follow the name with

a semicolon. Notice in the previous program that main(), next_fun(),

and third_fun() have no semicolons when they appear in the body

of the program. A semicolon follows their names only in main(),

where these functions are called.

341

EXAMPLE
C++ By

CAUTION: Never define a function in another function. All

function code must be listed sequentially, throughout the

program. A function’s closing brace must appear before an-

other function’s code can be listed.

Examples

1. Suppose you are writing a program that does the following.

First, it asks users for their departments. Then, if they are in

accounting, they receive the accounting department’s report.

If they are in engineering, they receive the engineering

department’s report. Finally, if they are in marketing, they

receive the marketing department’s report.

The skeleton of such a program follows. The code for main()

is shown in its entirety, but only a skeleton of the other

functions is shown. The switch statement is a perfect

function-calling statement for such multiple-choice

selections.

// Skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { cout << “Choose your department from the “ <<

 “following list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

Chapter 16 ♦ Writing C++ Functions

342

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating

 // system when finished.

}

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

The bodies of switch statements normally contain function

calls. You can tell that these case statements execute func-

tions. For instance, acct_report(); (which is the first line of

the first case) is not a variable name or a C++ command. It

is the name of a function defined later in the program. If

users enter 1 at the menu, the function called acct_report()

executes. When it finishes, control returns to the first case

343

EXAMPLE
C++ By

body, and its break statement causes the switch statement to

end. The main() function returns to DOS (or to your inte-

grated C++ environment if you are using one) when its

return statement executes.

2. In the previous example, the main() routine is not very

modular. It displays the menu, but not in a separate func-

tion, as it should. Remember that main() does very little

except control the other functions, which do all the work.

Here is a rewrite of this sample program, with a fourth

function to print the menu to the screen. This is truly a

modular example, with each function performing a single

task. Again, the last three functions are shown only as

skeleton code because the goal here is simply to illustrate

function calling and returning.

// Second skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { menu_print(); // Call function to print the menu.

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating system

 // when finished.

}

menu_print()

{

Chapter 16 ♦ Writing C++ Functions

344

 cout << “Choose your department from the following"

 "list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 return 0; // Return to main().

}

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

The menu-printing function doesn’t have to follow main().

Because it’s the first function called, however, it seems best

to define it there.

3. Readability is the key, so programs broken into separate

functions result in better written code. You can write and

test each function, one at a time. After you write a general

outline of the program, you can list a bunch of function calls

in main(), and define their skeletons after main().

345

EXAMPLE
C++ By

The body of each function initially should consist of a single

return statement, so the program compiles in its skeleton

format. As you complete each function, you can compile and

test the program. This enables you to develop more accurate

programs faster. The separate functions enable others (who

might later modify your program) to find the particular

function easily and without affecting the rest of the program.

Another useful habit, popular with many C++ programmers,

is to separate functions from each other with a comment

consisting of a line of asterisks (*) or dashes (-). This makes it

easy, especially in longer programs, to see where a function

begins and ends. What follows is another listing of the

previous program, but now with its four functions more

clearly separated by this type of comment line.

// Third skeleton of a departmental report program.

#include <iostream.h>

main()

{

 int choice;

 do

 { menu_print(); // Call function to print the menu.

 cin >> choice;

 } while ((choice<1) || (choice>3)); // Ensure 1, 2,

 // or 3 is chosen.

 switch choice

 { case(1): { acct_report(); // Call accounting function.

 break; } // Don’t fall through.

 case(2): { eng_report(); // Call engineering function.

 break; }

 case(3): { mtg_report(); // Call marketing function.

 break; }

 }

 return 0; // Program returns to the operating system

 // when finished.

}

//**

menu_print()

Chapter 16 ♦ Writing C++ Functions

346

{

 cout << “Choose your department from the following"

 "list\n”;

 cout << “\t1. Accounting \n”;

 cout << “\t2. Engineering \n”;

 cout << “\t3. Marketing \n”;

 cout << “What is your choice? “;

 return 0; // Return to main().

}

//***

acct_report()

{

 // :

 // Accounting report code goes here.

 // :

 return 0;

}

//***

eng_report()

{

 // :

 // Engineering report code goes here.

 // :

 return 0;

}

//***

mtg_report()

{

 // :

 // Marketing report code goes here.

 // :

 return 0;

}

Due to space limitations, not all program listings in this book

separate the functions in this manner. You might find,

however, that your listings are easier to follow if you put

these separating comments between your functions. The

application in Appendix F, “The Mailing List Application,”

347

EXAMPLE
C++ By

for example, uses these types of comments to separate its

functions.

4. You can execute a function more than once simply by calling

it from more than one place in a program. If you put a

function call in the body of a loop, the function executes

repeatedly until the loop finishes.

The following program prints the message C++ is Fun!

several times on-screen—forward and backward—using

functions. Notice that main() does not make every function

call. The second function, name_print(), calls the function

named reverse_print(). Trace the execution of this program’s

couts.

// Filename: C16FUN2.CPP

// Prints C++ is Fun! several times on-screen.

#include <iostream.h>

name_print();

reverse_print();

one_per_line();

main()

{

 int ctr; // To control loops

 for (ctr=1; ctr<=5; ctr++)

 { name_print(); } // Calls function five times.

 one_per_line(); // Calls the program’s last

 // function once.

 return 0;

}

//***

name_print()

{

 // Prints C++ is Fun! across a line, separated by tabs.

 cout << “C++ is Fun!\tC++ is Fun!\tC++ is Fun!

 \tC++ is Fun!\n”;

 cout << “C++ i s F u n !\tC++ i s F u n ! “ <<

 “\tC++ i s F u n !\n”;

Chapter 16 ♦ Writing C++ Functions

348

 reverse_print(); // Call next function from here.

 return 0; // Returns to main().

}

//***

reverse_print()

{

 // Prints several C++ is Fun! messages,

 // in reverse, separated by tabs.

 cout << “!nuF si ++C\t!nuF si ++C\t!nuF si ++C\t\n”;

 return 0; // Returns to name_print().

}

//***

one_per_line()

{

 // Prints C++ is Fun! down the screen.

 cout << “C++\n \ni\ns\n \nF\nu\nn\n!\n”;

 return 0; // Returns to main()

}

Here is the output from this program:

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++ is Fun! C++ is Fun! C++ is Fun! C++ is Fun!

C++ i s F u n ! C++ i s F u n ! C++ i s F u n !

!nuF si ++C !nuF si ++C !nuF si ++C

C++

349

EXAMPLE
C++ By

i

s

F

u

n

!

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: A function should always include a return

statement as its last command.

2. What is the name of the first function executed in a C++

program?

3. Which is better: one long function or several smaller

functions? Why?

4. How do function names differ from variable names?

5. How can you use comments to help visually separate

functions?

6. What is wrong with the following program section?

calc_it()

{

 cout << “Getting ready to calculate the square of 25 \n”;

 sq_25()

 {

 cout << “The square of 25 is “ << (25*25);

 return 0;

 }

 cout << “That is a big number! \n”;

 return 0;

}

Chapter 16 ♦ Writing C++ Functions

350

7. Is the following a variable name, a function call, a function

definition, or an expression?

scan_names();

8. True or false: The following line in a C++ program is a

function call.

cout << “C++ is Fun! \n”;

Summary
You have now been exposed to truly structured programs.

Instead of typing a long program, you can break it into separate

functions. This method isolates your routines so surrounding code

doesn’t clutter your program and add confusion.

Functions introduce just a little more complexity, involving the

way variable values are recognized by the program’s functions. The

next chapter (Chapter 17, “Variable Scope”) shows you how vari-

ables are handled between functions, and helps strengthen your

structured programming skills.

